
Transport Triggered Architecture processor for
Mixed-Radix FFT

Teemu Pitkänen and RistoMäkinen and Jari Heikkinen and Tero Partanen and Jarmo Takala.
Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland

[teemu.pitkanen, tero.partanen, jarmo.takala]@tut.fi

Abstract— Transport triggered architecture (TTA) offers a
cost-effective trade-off between the energy-efficiency and perfor-
mance of an ASIC implementation and the flexibility provided
by a software implementation on a programmable processor. In
this paper, we describe a programmable TTA processor, which
is tailored for computing mixed-radix fast Fourier transfo rm
(FFT). Several approaches has been exploited to reduce the
power consumption of the processor; e.g., special functionunits
for complex-valued arithmetics and address computation, clock
gating, instruction compression are utilized. The paper shows
FFT implementation supporting power-of-two FFTs with the
aid of mixed radix algorithm consisting of radix-4 and radix-
2 computations. The developed processor is programmable but
shows energy-efficiency comparable to fixed-function ASIC im-
plementations.

I. I NTRODUCTION

Fast Fourier transform (FFT) has an important role in many
digital signal processing (DSP) systems. E.g., in orthogonal
frequency division multiplexing (OFMD) communication sys-
tems, FFT and inverse FFT are needed. The OFMD technique
has become a widely adopted in several wireless commu-
nication standards. When operating in wireless environment
the devices are usually battery powered and, therefore, an
energy-efficient FFT implementation is needed. In CMOS
circuits, power dissipation is proportional to the square of the
supply voltage [1]. Therefore, a good energy-efficiency can
be achieved by aggressively reducing the supply voltage [2]
but unfortunately this results in lower circuit performance.
In this paper, a high performance, low power processor is
customized for from 32-point to 16384 point power of two
FFT applications. Several optimization steps, such as special
function units, code compression, manual code generation,
are utilized to obtain the high performance with low power
dissipation. The performance and power dissipation are com-
pared against commercial and academic processors and ASIC
implementations of the 1024-point FFT.

II. RELATED WORK

Digital signal processors offer flexibility and, therefore, low
development costs but at the expense of limited performance
and typically high power dissipation. Field programmable
gate arrays (FPGA) combine the flexibility and the speed
of application-specific integrated circuit (ASIC) [3]. How-
ever, FPGAs cannot compete with the energy-efficiency of
ASIC implementations. For a specific application, the energy-
efficiency between these alternatives can differ by multiple

orders of magnitude [4]. In general, FFT processor architec-
tures can be divided into five categories: processors are based
on single-port memory, dual-port memory, cached memory,
pipeline, or array architecture [5]. In [6], a reconfigurable
FFT-processor with single memory based scalable IP core
is presented, with radix-2 algorithm. In [7], variable-length
FFT processor is designed using pipeline based architecture.
It employs radix-2/4/8 single path delay feedback architecture.
The proposed processor supports three different transform
lengths by bypassing the input to the correct pipeline stage.
In [5], cached memory architecture is presented, which uses
small cache memories between the processor and the main
memory. It offers good energy-efficiency in low voltage mode
but with rather low performance. In [8], an energy-efficient
architecture is presented, which exploits subtreshold circuits
techniques. Again the drawback is the poor performance.

The proposed FFT implementation uses a dual-port memory
and the instruction schedule is constructed such that during
the execution two memory accesses are performed at each in-
struction cycle, i.e., the memory bandwidth is fully exploited.
The energy-efficiency of the processor matches fixed-function
ASICs although the proposed processor is programmable.

III. M IXED RADIX -4/2 FFT ALGORITHM

There are several FFT algorithms and, in this work, a mixed
radix approach has been used since it offers lower arith-
metic complexity than radix-2 algorithms and more flexible
transforms size compared to radix-4 algorithms. The specific
algorithm used here is a variation of the in-place radix-4/2
decimation-in-time (DIT) algorithm the first 4n-point FFT in
matrix form is defined as

F4n =

[

0

∏
s=n−1

[Ps
4n]T(I4n−1 ⊗F4)D

s
4nPs

4n

]

Pin
4n ;

Ps
4n = I4(n−s−1) ⊗P4(s+1),4s ;

Pin
4n =

n

∏
k=1

I4(n−k) ⊗P4k,4 ;

PK,R(m,n) =

{

1, iff n = (mRmodK)+ ⌊mR/K⌋
0,otherwise

(1)

where⊗ denotes tensor product,Pin
N is an input permutation

matrix of orderN, F4 is the 4-point discrete Fourier transform
matrix, Ds

N is a diagonal coefficient matrix of orderN, Ps
N is a

permutation matrix of orderN, andIN is the identity matrix of

orderN. Matrix PK,R is a stride-by-R permutation marix [9] of
orderK such that the elements of the matrix. In addition, mod
denotes the modulus operation and⌊·⌋ is the floor function.
The matrix Ds

N containsN complex-valued twiddle factors,
Wk

N, as follows

Ds
N =

N/4−1
M

k=0

diag
{

Wi(k mod 4s)
4s+1

}

,

i = 0,1, . . . ,3 ; Wk
N = e− j2πk/N (2)

where j denotes the imaginary unit and⊕ denotes matrix
direct sum.

When transform size is not equal to the 4n-point, the last
step is performed with radix-2 DIT algorithm, defined as

X(k) = F1,2(k)+Wk
n F2,2(k);

X(k+N/2) = F1,2(k)−Wk
n F2,2(k);

k = 0,1, . . . ,N/2−1 (3)

Finally, the matrixF4 andF2 is given as

F4 =





1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j



. F2 =
(

1 1
1 −1

)

. (4)

IV. T RANSPORTTRIGGEREDARCHITECTURE

Transport triggered architecture (TTA) is a class of statically
programmed instruction-level parallelism (ILP) architectures
that reminds very long instruction word (VLIW) architecture.
In the TTA programming model, the program specifies only
the data transports to be performed by the interconnection
network [10] and operations occur as “side-effect” of data
transports. Operands to a function unit are input through ports
and one of the ports is dedicated as a trigger. Whenever data is
moved to the trigger port, the operation execution is initiated.

When the input ports are registered, the operands for the
operation can be stored into the registers in earlier instruction
cycles and a transport to the trigger port starts the operation
with the operands stored into the registers. Thus the operands
can be shared between different operations of a function unit,
which reduces the data traffic in the interconnection and the
need for temporary storage in register file or data memory.

A TTA processor consists of a set of function units and
register files containing general-purpose registers. These struc-
tures are connected to an interconnection network, which
connects the input and output ports of the resources. The
architecture can be tailored by adding or removing resources.
Moreover, special function units with user-defined functional-
ity can be easily included.

V. TTA PROCESSOR FORM IXED RADIX FFT

An effective means to reduce power consumption without
reducing the performance is to exploit special function units
for the operations of the algorithm. These units reduce the
instruction overhead, thus they reduce the power consumption
due to instruction fetch. Here four custom-designed units
tailored for FFT application were used.

The interconnection network consumes a considerable am-
mount of power and, therefore, all the connections from ports
of function units and register files to the buses, which are not
really needed, should be removed. By removing a connection,
the capacitive load and the power consumption is reduced.

Due the reductictions in interconnection network, the pro-
grammability of processor is decreased. There can be placed
sertain connections, which allows the processor to be pro-
grammable. This action increase the power dissipation and are
thus not used in current proccessor architecture. Clock gating
technique can be used to reduce the power consumption of
non active function units. Significant savings can be expected
on units with low utilization.

TTA processors remind VLIW architectures in a sense
that they use long instruction words, which implies high
power consumption on instruction fetch. This overhead can be
significantly reduced by exploiting program code compression.

A. Arithmetic Units

Since the FFT is inherently an complex-valued algorithm,
the architecture should have means to represent complex data.
The developed processor uses 32-bit words and the complex
data type is represented such that the 16 most significant bits
are reserved for the real part and the 16 least significant bits
for the imaginary part. Real and imaginary parts use fractional
representation, i.e., one bit for sign and 15 bits for fraction.
The arithmetic operations in the algorithm in (1,3) can be
isolated to two into 4-input, 4-output blocks described as radix-
4 DIT butterfly operation and two radix-2 DIT butterflies as
following:

(y0,y1,y2,y3)
T = F4(1,W1,W2,W3)

T (x0,x1,x2,x3)
T (5)

(y0,y1)
T = F2(1,W1)

T (x0,x1)
T

(y2,y3)
T = F2(1,W2)

T (x2,x3)
T (6)

wherexi denotes an input operand,Wi is a twiddle factor, and
yi is an output operand. One of the special function units in
our design is complex multiplier, CMUL, which is a standard
unit containing four 16-bit real multipliers and two 16-bit
real adders. When the operand to the CMUL unit is a real
one, i.e., multiplication by one, the other operand is directly
bypassed to the result register. The CMUL unit is pipelined
and the latency is three cycles. The butterfly operation contains
complex additions defined by (4). In this work, we have
defined a four-input, one-output special function unit, CADD,
which supports eigth different summations for Radix-4 and
Radix-2 DIT butterflies according to each row inF4 and two
times F2. The motivation is that, in a TTA, the instruction
defines data transports, thus by minimizing the transports,the
number of instructions can be minimized. Each of the four
results defined byF4 andF2, are dependent on the same four
operands, thus once the four operands have been moved into
the input registers of the function unit, four results can be
computed simply by performing a transport to trigger register,
which defines the actual function out of the eigth possible
complex summations. The CADD consists six 16-bit adders
and the latency of the unit is two cycles.

DATA
MEM LD_STRF1

RF9 RF8 RF7 RF6 RF5 RF4 RF3RF10 RF11

LD_STADDCOGEN CMUL

CADD AG

CNTRL INSTR
MEM

COMP

RF2

Fig. 1. Architecture of the proposed processor. CADD: Complex adder.
CMUL: Complex multiplier. AG: Data address generator. COGEN: Coefficient
generator. ADD: Real adder. LDST: Load-store unit. COMP: Comparator
unit. CNTRL: Control unit. RFx: Register files, containing total of 25 general
purpose registers. SH : shifter unit. LOGIC: Logic unit.

B. Address Generation

TheN-point FFT algorithm in (1,3) contains variable length
permutations between the butterfly columns. In-place compu-
tations require manipulation of indices into data buffer. Such
manipulations are low-power if performed in bit-level. If the
2n input operands are stored into a buffer in-order, the read
index to the buffer, i.e., operand for the butterfly operation,
is obtained by rotation of two bits to the rigth. However, the
length of the bit field to be rotated is dependent on the butterfly
column index,s, in (1) and the size of transformationN.

Then-bit read indexp= (pmaxn−1pmaxn−2 . . . p0) is formed
from the element indexa as follows:















pi = ai , i >= n−2s
pi = a j , i < n−2s
j = i +2 , i < n−2−2s
j = i − (n−2−2s) , 1 >= n−2−2s

. (7)

Such an operation can be easily implemented with the aid of
multiplexers.

When the generated index is added to the base address
of the memory buffer, the final address to the memory is
obtained. The input ports of the address generation unit(AG)
are registered, thus the base address and size of FFT needs to
be stored only once into first and second operand port. The
butterfly column index is stored into third operand port and the
address computation is initiated by moving an index to trigger
port. Resulting the bit field rotation. The latency of address
generator is one.

C. Coefficient Generation

A coefficient generator (COGEN) unit was developed for
generating the twiddle factors, which reduces power con-
sumption compared to the standard method of storing the
coefficients as tables into data memory. In an radix-4 FFT,
there areNlog4(N) twiddle factors as defined by (2) but there
is redundancy. It has been be shown that all the twiddle
factors can be generated fromN/8+1 coefficients [11] with
the aid of simple manipulation of the real and the imaginary
parts of the coefficients. In similar fashion the reduction of
twiddle factors can be refined to the mixed radix algorithm, by
adding permutation network for butterfly element index. Same
principle can be applied to the radix-2 FFT. Both radix-4 and
radix-2 consist same set of twiddle factors, i.e. onlyN/8+1
coefficients are needed. The COGEN unit is based on a table

where theN/8+ 1 are stored. This table is implemented as
hard wired logic for reducing the power consumption. The unit
contains an internal address generator, which creates the index
to the coefficient table based on three input operands: butterfly
column index (s= 0,1, . . . ,ceil(log4(N))−1), element index
(a = 0,1, . . . ,N−1)) and the size of transformation (N). The
obtained index is used to access the table and the real and
imaginary parts of the fetched complex number are modified
by six different combinations of exchange, add, or subtract
operations depending on the state of input operands. The
resulting complex number is placed in the output register as
the final twiddle factor.

D. General Organization

The general organization of the proposed TTA processor
tailored for mixed radix FFT processor is presented in Fig. 1.
The processor is composed of 11 separate function units and a
total of 11 register files containing 25 general-purpose registers
and 3 boolean registers. The function units and register files
are connected by an interconnection network (IC) consisting
of 17 buses and 65 sockets. In addition, the proposed processor
contains a control unit, instruction memory, and dual-ported
data memory. The size of the data memory is 16400 words
of 32 bits implying that 32-bit data buses are used. The data
memory is divided to seven blocks. There is one 1-bit bus,
which is used for transporting the Boolean values.

E. Instruction Schedule

In principle, mixed radix-4/2 FFT algorithm in (??) contains
two nested loops: an inner loop where the butterfly operation
is computed 4(n−1) times and an outer loop where the inner
loop is iteratedn times. Each butterfly operation requires four
operands and produces four results. Therefore, in a N-point
FFT, a total of(N ∗ stages∗2) memory accesses are needed.
If a single-port data memory is used, the lower bound for the
number of instruction cycles for a, i.e., 1024-FFT is 10240.If
a dual-port memory is used, the lower bound is 5120 cycles.

In order to maximize the performance, the inner loop kernel
needs to be carefully optimized. Since the butterfly operations
are independent, software pipelining can be applied. In our
implementation, the butterfly operations are implemented in
a pipelined fashion and several butterflies at different phases
of computation are performed in parallel. The developed
mulitple-point FFT code follows the principal code in Fig. 2.

In initialization, pointers and loop counters, i.e., butterfly
and element indices, are set up. The size of transformation
is fetched from data memory buffer. The input data is stored
in order into data memory buffer. The intermediate and final
results will be stored is same buffer replacing previous data
in buffer, i.e. for 16384 point transform 16385 buffer slot’s,
one slot for size of transformation, are used. The AG output
is used to access the buffer in correct place, i.e. no extra code
is needed for input or intermediate permutation.

In the prologue, the butterfly iterations are started one after
each other and, in the actual inner loop kernel, four iterations
of butterfly kernels are performed in parallel in pipelined
fashion. The loop kernel evaluates also the loop counter. In

main() {
initialization(); /* 8 to 42 instructions */
for(stage=0; stage<[log4 N]; stage++) {

prologue(); /* 18 instr. */
for(k=0; k<(N-14)/12; k++)

kernel(); /* 12 instr. */
if(r2flag == 1)

oddepilogue; /* 18 instr. */
else
evenEpilogue; /* 14 instr. */

}
}

Fig. 2. Pseudocode illustrating structure and control flow of program code.

the epilogue, the last butterfly iterations are completed and
the loop counter of the outer loop is evaluated. The kernel
contains the functionality of butterfly operations, which re-
quires four triggers for memory reads and memory writes and
corresponding address computations, four triggers for complex
multiplier and four triggers for CADD unit. Since the branch
latency is three cycles, the kernel can actually be implemented
with four instructions. However, this approach results in a
need for moving variables from an register to another. The
reason is that parallel butterfly iterations need more than four
intermediate results, which need to be stored into registerfiles.
Since there is no mechanism to dynamically index the register
accesses, the only way is to use the register files as first-
in-first-out buffers. Such register copies introduce additional
power consumption, in particular, since the transports require
additional buses and increase the register activity.

The final implementation of the kernel was 12 instructions
and by that way, it was possible to keep the intermediate
results in a dedicated register without need to copy the values.
This resulted significant savings in power consumption at the
expense of lengthening the program code by eight instructions.
The parallel code for mixed radix FFT contains a total of
107 instructions and the instruction length was 167 bits. The
execution of 1024-point FFT takes 5264 instruction cycles,
thus the overhead to the theoretical lower bound with dual-port
data memory (5120 cycles) is only 3% (144 cycles). Maximum
overhead is 208 and minumum overhead is 78 cycles.

Overheads in calculation of larger FFT is negligible com-
pared to overheads seen in typical software implementations.

F. Code Compression

TTA suffers from poor code density, which is mostly due to
minimal instruction encoding that is used to simplify decoding.
Minimal instruction encoding leads to long instruction words.

The poor code density can be improved by compression.
Compression also results in reduced power consumption as
fewer bits need to be fetched from the program memory.
Dictionary-based compression is one of the simplest compres-
sion approaches to improve the code density [12]. Dictionary-
based program compression stores all unique bit patterns into
a dictionary and replaces them in the program code with
code words to the dictionary. Given a program withN unique

TABLE I

CHARACTERISTICS OF MIXED RADIX FFT PROCESSOR ON130NM ASIC

TECHNOLOGY WITH 1.5V SUPPLY VOLTAGE.

Clock Cycles 174 to 114891 Execution Time 676 ns to 489,56µs

Power 75,8 to 104 mW Clock Frequency 250 MHz

Area 890 kgates Energy 52,76 nJ to 47,79µJ

instructions, the length of the code word is⌈log2|N|⌉ bits.
During execution, the code word, fetched from the program
memory is used to obtain the original instruction from the
dictionary for decoding.

In order to reduce the power consumption of the proces-
sor and improve the code density, dictionary-based program
compression was applied. All the unique instructions of the
program code were stored into a dictionary and replaced with
indices pointing to the dictionary. This resulted in decrease in
the width of the program memory from 167 bits to 7 bits. The
decompression, i.e., the dictionary access was supplemented to
the control unit without additional pipeline stage. The actual
dictionary was implemented using standard cells.

VI. PERFORMANCEANALYSIS

In order to analyse the characteristics of the proposed
processor, the structures of the previous special functionunits
were described manually in VHDL. The structural description
of the proposed core was obtained with the aid of the TCE
[13], which generated the VHDL description and provided fast
and illustrating simulator for design of the proposed processor.

Then the proposed processor was synthesized to a 130nm
CMOS standard cell ASIC technology with Synopsys Design
Compiler. This was followed by a gate level simulation at
250 MHz. Synopsys Power Compiler was used for the power
analysis. The obtained results are listed in Table I. It should
be noted that the memories take from 40 to 52% of the total
power consumption of 75,8 to 104 mW with 1.5V supply
voltage. If the supply voltage is reduced to 1.1V, the total
power consumption will drop down to about 40 to 55 mW.
However, this will reduce the maximum clock frequency.

Table II presents how many 1024-point FFT transforms can
be performed with energy of 1 mJ. The results are presented
for ten different implementations of the 1024-point FFT. For
some implementations there are different operating voltage or
clock frequency points listed. Spiffee processor [5] employs a
high performance architecture and low supply voltages and it’s
dedicated for the FFT. The StrongArm SA-1100 processor [14]
employs custom circuits, clock gating, and reduced supply
voltage. The Stratix [15] is an FPGA solution with dedicated
embedded FFT logic usign Altera Megacore function. The TI
C6416 [16] is a digital signal processor and the Imagine [17]
is a media processor. They were both created using pseudo-
custom data path tiling. In addition, the TI C6416 employs
pass-gate multiplexer circuits. The 1024-point FFT with radix-
4 algorithm can be computed in 6002 cycles in TI C6416 when
using 32-bit complex words (16 bits for real and imaginary

TABLE II

THE NUMBER OF 1024-POINTFFTS PERFORMED WITH A UNIT OF ENERGY.

Design Tech. Oper.
voltage

Clock
freq.

Exec.
time

FFT/mJ Design Tech. Oper.
voltage

Clock
Freq.

Exec.
time

FFT/mJ

[nm] [V] [MHz] [µs] [nm] [V] [MHz] [µs]

proposed 130 1.5 250 21.06 505 max 1K FFT 130 1.5 250 21.06 641
Imagine 150 1.5 232 16.0 16 130 1.2 720 8.34 100

600 1.1 16 330 319 TI C6416 130 1.2 600 10.0 167
Spiffee 600 2.5 128 41 67 130 1.2 300 21.7 250

600 3.3 173 40 39 MIT FFT 180 0.35 0.01 250000 6452
SA-110 350 2 74 425.7 60 180 0.9 6 430.6 1428

130 1.3 275 4.7 241 Lin 350 3.3 45.45 22.5 93
Stratix 130 1.3 133 9.7 173 350 2.3 17.86 57 133

130 1.3 100 12.9 149 Zhao 180 - 20 281.6 43
Intel P4 130 1.2 3000 23.9 0.8

parts) [18]. However, in-place computations cannot be used
and the processor has eight memory ports while the proposed
processor uses only two. The Intel Pentium-4 [19] is a standard
general-purpose microprocessor. Rest of the processors are
dedicated for the FFT. The custom scalable IP core Zhao [6],
employs single memory architecture with clock gating. The
custom variable-length Lin [7] FFT-processor employs radix-
2/4/8 single-path delay algorithm. MIT FFT uses subtreshold
circuit techniques [8].

Only the MIT FFT outperforms the design. However, due
to its long execution time, the MIT FFT is not usable in
high performance designs. The performance of the proposed
processor is still quite feasible although it does not provide
the best performance. However, the performance can be scaled,
i.e., the execution time can be halved by doubling the resources
and memory ports. The memory size remains constant and it
can be estimated that the energy-efficiency remains the same.

VII. C ONCLUSIONS

In this paper, a low-power application-specific processor
for FFT computation with different trasform sizes has been
described. The resources of the processor have been tailored
according to the needs of the application consisting of eight
function units and 11 register files. Several methods for re-
ducing the power consumption of the processor were utilized:
clock gating, special function units, and code compression.
The processor was synthesized on a 130 nm ASIC technology
and power analysis showed that the proposed processor has
both high energy-efficiency and high performance.

The described processor has limited programmability but
the purpose of this experiment was to prove the feasibil-
ity and potential of the proposed approach. However, the
programmability can be improved by introducing additional
function units and loosening the code compression. In addi-
tion, the performance of the processor can be improved by
adding computational resources implying need for higher data
memory bandwidth

ACKNOWLEDGEMENT

This work has been supported by the Academy of Finland
under project 205743 and the National Technology Agency of
Finland under research funding decision 40153/05.

REFERENCES

[1] N. Weste and K. Eshraghian,Principles of CMOS VLSI Design: A
Systems Perspective. Reading, MA: Addison-Wesley, 1985.

[2] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-powerCMOS
digital design,” IEEE Journal of Solid State Circuits, vol. 27, no. 4,
pp. 473–483, Apr. 1992.

[3] K. Reeves, K. Sienski, and C. Field, “Reconfigurable hardware accel-
erator for embedded DSP,” inProc. SPIE High-Speed Comp. Dig. Sig.
Proc. Filtering Using Reconf. Logic, J. Schewel, P. M. Athanas, V. M.
Bove, and J. Watson, Eds., vol. 2914, Boston, MA, Nov. 20–21 1996,
pp. 332–340.

[4] A. Chang and W. Dally, “Explaining the gap between ASIC and custom
power: A custom perspective,” inProc. IEEE DAC, Anaheim, CA, June
13–17 2005, pp. 281–284.

[5] B. M. Baas, “A low-power, high-performance, 1024-pointFFT proces-
sor,” IEEE Solid State Circuits, vol. 43, no. 3, pp. 380–387, March 1999.

[6] Y. Zhao, A. Erdogan, and T. Arslan, “A low-power and domain-specific
reconfigurable fft fabric for system-on-chip applications,” in Proc. 19th
IEEE Parallel and Distrubuted Prosessing Symp. Reconf. Logic, Denver,
CO, Apr. 4–8 2005.

[7] Y.-T. Lin, P.-Y. Tsai, and T.-D. Chiueh, “Low-power variable-length
fast fourier transform processor,”Proc. IEE Computers and Digital
Techniques, vol. 152, no. 34, pp. 499–506, July 8 2005.

[8] A. Wang and A. Chandrakasan, “A 180-mV subthreshold FFT processor
using a minimum energy design methodology,”IEEE J. Solid State
Circuits, vol. 40, no. 1, pp. 310–319, Jan. 2005.

[9] J. Granata, M. Conner, and R. Tolimieri, “Recursive fastalgorithms and
the role of the tensor product,”IEEE Trans. Signal Processing, vol. 40,
no. 12, pp. 2921–2930, Dec. 1992.

[10] H. Corporaal, Microprocessor Architectures: From VLIW to TTA.
Chichester, UK: John Wiley & Sons, 1997.

[11] L. Wanhammar,DSP Integrated Circuits. San Diego, CA: Academic
Press, 1999.

[12] C. Lefurgy and T. Mudge, “Code compression for DSP,” EECS Depart-
ment, University of Michigan, Technical Report CSE-TR-380-98, Nov.
1998.

[13] P. Jääskelainen, “Instruction set simulator for transport triggered archi-
tectures,” Master’s thesis, Tampere Univ. Tech., Tampere,Finland, Apr.
2005.

[14] StrongARM SA-110 Microprocessor for Portable Applications Brief
Datasheet, Intel, 1999.

[15] S. Lim and A. Crosland, “Implementing FFT in an FPGA co-processor,”
in The International Embedded Solutions Event (GPSx), Santa Clara,
CA, Sept. 2004, pp. 230–233.

[16] S. Agarwala, and group, “A 600 MHz VLIW DSP,”IEEE J. Solid State
Circuits, vol. 37, no. 11, pp. 1532–1544, Nov. 2002.

[17] S. Rixner, W. Dally, and group. , “A bandwidth-efficientarchitecture for
media processing,” inProc. Annual ACM/IEEE Int. Symp. Microarchi-
tecture, Dallas, TX, Nov. 30 – Dec. 2 1998, pp. 3–13.

[18] TMS320C64x DSP Library Programmer’s Reference, Texas Instruments,
Inc., Dallas, TX, Oct. 2003.

[19] M. Deleganes, J. Douglas, B. Kommandur, and M. Patyra, “Designing a
3 GHz, 130 nm, IntelR© Pentium R©4 processor,” inDigest of Technical
Papers Symp. VLSI Circuits, Honolulu, HI, June 13–15 2002, pp. 230–
233.

