
TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Electrical Engineering

TEEMU PITKÄNEN

Experiments of TTA on ASIC Technology

Master of Science Thesis

Subject approved by Department Council

12th may, 2004

Examiners: Prof. Jarmo Takala

Prof. Markku Kivikoski

PREFACE

This MSc thesis was completed in Institute of Digital and Computer Systems of Tam-

pere University of Technology (TUT) in 2002-2005 as a part of the Flexible Design

Methods for DSP Systems (FlexDSP) project funded by the National Technology Agen-

cy.

I would like to express my sincere gratitude to my thesis supervisor Professor Jarmo

Takala for his guidance and valuable tips for the thesis. I would also like to thank Jari

Heikkinen, MSc, for always having time and patience to answer all the questions and

giving some valuable tips for the thesis. My warm thanks to all my colleagues who have

provided the inspiring work athmosphere.

Finally, I wish to thank my family for their support throughout my studies. Most of all,

I want to thank my lovely Kati for her love and support.

Tampere, August 17, 2005

Teemu Pitkänen

TABLE OF CONTENTS

Abstract ��� 4

Tiivistelmä ��� 5

List of Abbreviations and Symbols ��� 8

1. Introduction ��� 10

2. Transport Triggered Architectures ��� 12

2.1 Development of TTA . 12

2.2 Hardware Aspects . 13

2.2.1 Functional Units and Register Files 14

2.2.2 Interconnection Network . 15

2.2.3 Transport Pipelining . 15

2.2.4 Instruction Format . 16

2.3 MOVE Framework . 17

3. Technology Characterization ��� 20

3.1 Function Unit . 21

3.1.1 Characterization Parameters 22

3.1.2 Characterization . 24

3.2 Register File . 24

3.2.1 Characterization Parameters 25

3.2.2 Characterization . 25

3.3 Interconnection Network . 26

3.3.1 Characterization Parameters 26

Table of Contents 3

3.3.2 Characterization . 28

3.4 Control Characterization . 29

3.5 Generation of Cost Figure Database 29

4. Estimation for TTAs ��� 33

4.1 Estimation Procedure . 34

4.2 Function Unit . 35

4.3 Register File . 36

4.4 Interconnection Network . 36

4.5 Control Unit . 37

5. Implementation Experiments ��� 39

5.1 Clock Gating . 39

5.1.1 Clock Gating on TTA . 40

5.1.2 Implementation Experiments of Clock Gating 41

5.2 Design Flow of TTA Processor . 42

5.2.1 Configuration Selection . 43

5.2.2 VHDL Generation . 43

5.2.3 VHDL Verification . 44

5.3 Test Cases . 46

6. Conclusions ��� 50

References ��� 51

Appendix A Example of Input Socket and Output Socket

Appendix B Functional Unit Configuration

Appendix C External Interface

Appendix D Cost Database

Appendix E Compilation Scripts for Modelsim

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Department of Electrical Engineering

Institute of Digital and Computer Systems

Pitkänen, Teemu Oskari: Experiments of TTA on ASIC Technology

Master of Science thesis: 47 pages, 8 appendix pages

Examiners: Prof. Jarmo Takala and Prof. Markku Kivikoski

Funding: The National Technology Agency

August 2005

Keywords: transport triggered architecture, cost estimation, design space exploration,

technology characterization

The application specific processor design offers a great solution for performance, and
area and energy consumption compared to fixed core design. However the design is
found to be challenging and time consuming task, thereby the automated design space
exploration has great interest in designing application specific processors. The explo-
ration tool assist designer by foraging for most interesting processor configuration from
the design space for the current application. For an effective exploration procedure the
exploration tool requires, beside an effective exploration algorithm, fast and accurate
enough hardware cost estimation. The cornerstone of accurate hardware cost estimation
is the technology characterization.

The MOVE framework is a set of non-commercial software tools, which provide a semi-
automatic design for custom processors. The framework utilizes the transport triggered
architecture (TTA) programming scheme. In TTA operations occur as a side effect of the
explicit data transport, defined in program code, between operational units connected by
the interconnection network.

In this thesis the technology characterization for MOVE framework estimator was de-
veloped. Technology characterization is based on the component division of TTA and
there are four different classes: Functional units, Register files, Interconnection network
and Control unit. For each class there are separated characterization parameters. The
parameters of characterization are technology independent, which allows the estimation
procedure not to be depended on the used technology. The database of costs was created
and several estimation results were compared to the results of synthesized processors.

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO

Sähkötekniikan koulutusohjelma

Digitaali- ja tietokonetekniikan laitos

Pitkänen, Teemu Oskari: TTA Tutkimusta ASIC Teknologialla

Diplomityö: 47 sivua, 8 liitesivua

Tarkastajat: Prof. Jarmo Takala and Prof. Markku Kivikoski

Rahoitus: Teknologian kehittämiskeskus (TEKES)

Elokuu 2005

Avainsanat: transport triggered architecture, cost estimation, design space exploration,

technology characterision

Sovelluskohtaisten suorittimien suunnittelu tarjoaa erinomaisen ratkaisun niin suori-
tuskyvyn kuin pinta-alan ja energian kulutuksen kannalta verrattuna valmiisiin ohjel-
moitaviin ratkaisuihin. Tämän lisäksi järjestelmän toiminnan kuvaaminen korkean tason
ohjelmointikielellä on nopeampaa ja vähemmän virhealtista kuin perinteinen suoritin-
suunnittelu. Tälläisten suorittimien suunnittelun on todettu olevan vaikea ja paljon aikaa
kuluttava prosessi, joten automaattinen suunnitteluavaruuden läpikäyminen tarjoaa mie-
lenkiintoisen vaihtoehdon sovelluskohtaisten suorittimien suunnitteluun. Työkalu, jolla
voidaan mahdollistaa suunnitteluavaruuden läpikäyminen, auttaa suunnittelijaa löytä-
mään kiinnostavimmat sovelluskohtaiset suoritinkokoonpanot. Jotta suunnitteluavaruu-
den läpikäyminen olisi tehokasta, tarvitaan tehokkaan algoritmin lisäksi nopea ja riit-
tävän tarkka laitteiston kustannusten arviointityökalu. Laitteiston kustannusten arvioin-
nin perustana on hyvä teknologian karakterisointi, jolla voidaan mahdollistaa sekä riip-
pumattomuus kohdeteknologiasta että riittävä tarkkuus.

MOVE framework on joukko ei-kaupallisia suunnittelutyökaluja, jotka muodostavat
suunnitteluympäristön mukautettujen sovelluskohtaisten suorittimien nopean, osittain
automatisoidun suunnittelun. MOVE framework tarjoaa korkealla tasolla kuvatun sovel-
luksen kääntämisen ja optimoinnin rinnakkaismuotoiseksi, suorittimella ajettavaksi bi-
näärikoodiksi. Lisäksi framework tarjoaa suunnitteluavaruuden läpikäymisen, johon tar-
vitaan ohjelman suoritukseen kuluneiden kellojaksojen määrä sekä laitteiston kustan-
nukset. Molemmat arvot ovat saatavilla MOVE frameworkin työkaluilla. Laitteiston
kustannusten arvionnin tulee olla nopea ja riittävän tarkka. Nopeus on eduksi, kun käy-
dään satoja arkkitehtuureja läpi suunnitteluavaruudesta parhaimman ratkaisun löytämi-
seksi. Riittävä tarkkuus saavutetaan, kun saadut tulokset ovat niin luotettavia, että niiden
pohjalta pystytään tekemään päätös, onko kyseinen arkkitehtuuri parempi kuin edellinen

Tiivistelmä 6

vai seuraava. Työkalujoukko käyttää transport triggered -suoritinarkkitehtuuria (TTA)
suunnittelualustana. Kyseinen suoritinarkkitehtuuri kuuluu niin sanottujen käskytason
rinnakkaisuutta hyödyntäviin mikroprosessorityyppeihin. TTA-suorittimissa operaatiot
tapahtuvat datasiirtojen oheistuotteena. Datasiirrot, jotka määritellään ohjelmakoodissa,
tapahtuvat toimintayksiköiden välillä, jotka on kytketty toisiinsa siirtoverkon välityksel-
lä. Ohjelmointitavasta johtuen ohjelman konekielisen toteutuksen kirjoittaminen käsin
on erittäin vaikeaa, mutta siirtojen tarkka ohjelmoitavuus antaa kehittyneelle aikataulut-
tavalle kääntäjälle mahdollisuuden käyttää kehittyneitä optimointimenetelmiä sovelluk-
sien sisältämän rinnakkaisuuden hyödyntämiselle.

TTA-suoritinarkkitehtuuri on yksinkertainen: se koostuu toimintayksiköitä ja yleiskäyt-
töisistä rekistereistä, jotka kytketään toisiinsa siirtoverkon kautta. Lisäksi suorittimessa
on kontrolliyksikkö, joka toimittaa käskymuistissa olevat datasiirrot toimintayksiköille
sekä rekistereille ja purkaa mahdollisesti pakatun käskyn yksiköiden ymmärtämään
muotoon. Suorittimessa on mahdollisesti myös käsky- ja datamuisti. Siirrot yksiköiden
välillä ovat ohjelmoitavissa, joten kytkentäverkon kytkennät voidaan määrittää sovel-
luksen vaatimusten mukaisesti. Tällöin saadaan siirtoverkon kapasitanssi laskemaan
verrattuna tilanteeseen, jolloin siirtoverkon koko kapasiteetti olisi käytössä. Siirtoverkon
kapasiteettia ja toimintayksiköitä voidaan lisätä, kuitenkaan kasvattamatta suorittimen
kompleksisuutta exponetiaalisesti, suorittimen suorituskyvyn parantamiseksi.

Tässä diplomityössä on suoritettu teknologian karakterisointi suorittimen kustannuk-
sien arviointia varten TTA-suorittimille, sekä esitelty kustannusten arvioinnin perusteet.
Lisäksi työssä esitellään tehon kulutuksen minimoimiseksi kellon portitustekniikka ja
suunnitteluvuo TTA-suorittimelle.

Kustannusten arviointi perustuu suorittimen komponenttien pinta-alaan, energian kulu-
tukseen sekä ajoitusinformaatioon. Lisäksi arvioinnin pitää olla käytetystä teknologias-
ta riippumaton, mikä saavutetaan kuvaamalla fyysistä informaatiota kohdeteknologiasta
korkeammalla abstarktiotasolla. Kyseinen kuvausmuodostaa tietokannan karakterisoitu-
jen komponenttien kustannuksista. Kustannustietokantaa kutsutaan costdb-nimikkeellä.
Näin ollen kustannusten arviointi on teknologiasta riippumatonta, koska riippuvuus si-
jaitsee kustannustietokannassa, tai tarkemmin ottaen tietokannan luonnissa, eli toisin
sanoen teknologian karakterisoinnissa.

Kellon portitus on keino vähentää kellopolun kuluttamaa tehoa, laskemalla kellopolun
kapasitanssia, sekä koko kellopolun aktiivisuutta. Samalla portitus laskee yksiköiden
tehonkulutusta poistamalla näiltä turha aktiivisuus. Portituksen perusidea on yksinker-
tainen, kellopolku katkaistaan, jos polun loppuosaa ei käytetä. Katkaisu tapahtuu oh-
jaussignaalien avulla, TTA:ssa käytetään kellon portituksen ohjaussignaaleina yksiköi-
den aktivointisignaaleja. Tällöin ylimääräistä ohjausta ei tarvita ja portitus voidaan tehdä
automaattisesti.

Teknologian karakterisointi perustuu kirjaston luomiseen, joka sisältää informaatiota
TTA-arkkitehtuurin sisältämien komponenttien pinta-alasta ja energian kulutuksesta.
Lisäksi kirjasto sisältää komponenttikohtaista informaatiota, jolla jokainen komponent-
ti voidaan tunnistaa. Komponenttikohtainen informaatio on valittu siten, että karakte-
risointi onnistuu, vaikka kohde teknologiaa vaihdetaan, esimerkiksi standardisolupoh-
jaisesta FPGA-pohjaiseksi. Tällöin tietenkin tietokanta, johon arvot tallennetaan, on
tehtävä uudestaan, jotta se olisi paikkaansapitävä. Karakterisointiperiaatteiden mukaan

Tiivistelmä 7

voidaan luoda kustannustietokanta ja tietokannasta kustannusarvioija voi hakea jokaisen
komponentin kustannukset sekä laskea kokonaispinta-alan ja energian kulutuksen TTA-
suorittimelle. Tietokanta luodaan cost-database generator-nimisellä ohjelmalla. Uusi
kustannus tietokannan luontiohjelma tehtiin, koska edellisen todettiin olevan vaikeakäyt-
töinen ja sen teknologian karakterisointiperiaatteet olivat sekä vanhentuneet että osittain
vääristävät. Ne loivat kuvan siitä, että arviointiprosessi olisi teknologiasta riippumaton,
kun todellisuudessa prosessissa oli teknologialle ominaisia parametrejä, joita siinä ei
olisi pitänyt esiintyä.

Jotta kustannusten arviointia ja teknologian karakterisointia pystyttäisiin arvioimaan lu-
otiin MOVE framework-työkaluilla joukko suorittimia kolmelle eri sovellukselle. Suorit-
timet sijoittuivat eri kohtiin kustannus-suorituskykytasoa. Suorittimien kustannukset ar-
vioitiin kustannusten arvioijalla sekä syntesoitiin 0,13 µm vakiosoluteknologialla, jot-
ta saataisiin referenssitulokset, joihin voidaan verrata arvioijan antamaa tulosta. Tu-
loksista havaittiin, että arvioijan antamat tulokset ovat riittävän luotettavia, vaikkakin
parantamisen varaa on kytkentäverkon ja ohjausyksikön arvioinnissa. Lisäksi arvioijan
nopeus on monisatakertainen verrattuna logiikkasynteesiin, jolloin sitä voidaan hyväk-
sikäyttää suunnitteluavaruuden läpikäynnissä.

LIST OF ABBREVIATIONS AND SYMBOLS

Axx Area of xx

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction Set Processor

d Density

DC Decode stage

DCT Discrete Cosine Transform

DSP Digital Signal Processor or Digital Signal Processing

Exx Energy of xx

EX Execute stage

FPGA Field-Programmable Gate Array

FU Function Unit or Functional Unit

GPR General-Purpose Register

HLL High-Level Language

i number of

IC Interconnection network

ID Identifier

IF Instruction Fetch stage

ILP Instruction-Level Parallelism

l Length of pipeline

List of Abbreviations and Symbols 9

MV Move stage

nxx Number of xx

P Power

PC Program Counter

RA Return Address

RAM Random-Access Memory

RF Register File

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

RTL Register Transfer Level

SAIF Switching Activity Interchange Format

SIMO Single Instruction Multiple Operation

SIMT Single Instruction Multiple Transition

SFU Special Function Unit

SVTL Semi Virtual Time Latching

txx Time of xx

TTA Transport Triggered Architecture

TVTL True Virtual Time Latching

Uxx Utilization of xx

VHDL Very high speed integrated circuit Hardware Description Language

VLIW Very Long Instruction Word

VLSI Very Large Scale Integration

VTL Virtual Time Latching

1. INTRODUCTION

The general trend for application specific integrated circuit (ASIC) design is to use

high-level language (HLL) for describing the circuit. This calls for analyzing several

architecture alternatives. This analysis requires several tasks to be performed: program

code for the application has to be generated, performance of the code on each configura-

tion has to be evaluated and implementation costs have to be analyzed. These tasks are

almost impossible, and they require a huge effort to be performed manually. The same

problem is faced when an existing architecture is customized with application-specific

functional units and the effects of the modification are needed.

This problem can be alleviated with tool-assisted design space exploration where the ar-

chitecture can be varied and a HLL compiler can adapt to the changes in the architecture.

In addition, the estimates of the cost of the application executed on the architecture, e.g.,

execution time, area, and energy, should be obtained. If hundreds of different architec-

tures are to be analyzed, it is essential that the estimations can be obtained quickly and

accurate enough for design purpose.

In this thesis the technology characterization for Transport triggered architecture (TTA)

is performed and a methology for estimation area and energy consumption on a spe-

cific processor configuration is proposed. The proposed methology is technology in-

dependent which allows the usage of estimation procedure when the target technology

changes. The technology characterization results are stored into a database of costs,

which is used for evaluating the processor costs, in means of area and energy. The

estimates given by proposed methology are compared to the values obtained from the

reference designs and the results show that the accuracy of the method is sufficient for

exploration process and the estimation is very rapid compared to the traditional meth-

ods. Secondly this thesis presents the design flow of a TTA processor.

The organization of this thesis is as follows. Chapter 2 describes the TTA and the de-

velopment of TTA from very long instruction word (VLIW) architecture. The main

concentration is at hardware aspects of TTA. In chapter 2 the MOVE framework is

introduced following by introductions of some of the framework tools. In chapter 3

1. Introduction 11

the characterization of TTA processor components are described and the detailed in-

formation about characterization constraints are presented. In chapter 4 the Estimation

procedure of TTA processor is described, and the calculation of the output statistics of

Estimator is presented. The chapter 5 presents the design flow of TTA processor. Sec-

ondly the clock gating is experimented and finally several architectures are evaluated to

verifying the correctness and accuracy off the estimation procedure.

2. TRANSPORT TRIGGERED ARCHITECTURES

Performance improvement is important for the latest microprocessors. A very good

method to gain more performance is to exploit instruction level parallelism (ILP). ILP

detection can be done by two ways: runtime or compile time.

In runtime detection, the processor hardware detects and resolves the dependencies be-

tween the operations in sequential instruction stream at runtime. Such detection is done

by superscalar processors, e.g., Intel Pentium.

The compile time ILP detection is done by a compiler. It translates sequential instruction

code to parallel instruction code, which is fed to the processor. Compile time detection

is done in the very long instruction word (VLIW) and the transport triggered Archi-

tecture (TTA) processors. Superscalar processors are binary compability with previous

architecture generation, but suffer from hardware complexity and long design cycle

compared to VLIW or TTA. That makes TTA’s and VLIW’s attractive alternatives for

embedded systems.

TTA can be viewed as a superset of VLIW, which is a superset of RISC’s (a RISC can be

viewed as a VLIW with only one functional unit) [1]. Transport triggered architectures

can be specified as single instruction multiple transition (SIMT), and VLIW can be

specified as single instruction multiple operations (SIMO).

Section 2.1 introduces the development of TTA concept. Section 2.2 describes hardware

aspects of TTA. Section 2.3 introduces MOVE framework, an automated tool for TTA

processor generation.

2.1 Development of TTA

TTA architecture was developed from VLIW architecture. The main difference is in

the way, how operations are programmed and executed. In VLIWs, instructions specify

RISC type operations, while in TTAs instructions specify data transports. Due to this

TTA is also called the MOVE architecture. Operations performed to data are implicitly

2. Transport Triggered Architectures 13

In
st

ru
ct

io
n

 m
e

m
o

ry
Instruction

Fetch

Instruction

Decode

D
a

ta
 M

e
m

o
ry

FU1

FU5

FU4

FU3

FU2

RF1

RF3

RF2

re
g

is
te

r
fi

le
s

core

VLIW organization

TTA organization

In
st

ru
ct

io
n

 m
e

m
o

ry

Instruction

Fetch

Instruction

Decode

D
a

ta
 M

e
m

o
ry

FU1

RF2

RF1

FU3

FU2

core

in
te

rc
o

n
n

e
ct

io
n

 n
e

tw
o

rk

a)

b)

Figure 1. Organization of a) VLIW and b) TTA.

specified with the destination of transport.

TTA was developed to reduce the complexity of VLIW by placing the register traffic

under program control. In other words the data transports become visible at the archi-

tectural level and they can be controlled and optimized by the compiler. TTAs are orga-

nized as a set of functional units (FUs) and register files (RFs) which are connected by

an interconnection network (IC). Organization of VLIW and TTA are shown in Fig. 1.

2.2 Hardware Aspects

TTA processors consist of FUs and RFs, which are connected to each other with inter-

connection network. An example of FUs is shown in Fig. 2. Register files can be

considered as a special kind of functional units because they use the same interface for

connections to the interconnection network.

FUs can have arbitrary functionality and so they are completely independent from each

other and that is why they can be designed separately. FUs can be pipelined for dif-

ferent stages. Processing different type of functionality can take different amount of

clock cycles. TTA hardware generation process can be automated and different kind of

2. Transport Triggered Architectures 14

EN
CLK

CLK

t1load

glock

o1load

opcode

clock

reset

t1data o1data

r1data

EN
CLK

EN
CLK

CLK

Logic

EN
CLK

Logic

(optional)

(optional)pipeline register

Figure 2. Functional unit.

processors can be easily configured by assembling different combinations of functional

units.

2.2.1 Functional Units and Register Files

FUs are responsible for performing operations on data. FUs read data from an input

socket, and when the operation is completed, modified data can be read from the result

socket of the FU. Usually in TTA, there are at least three types of FUs: instruction

fetch unit, load-store unit, and guard generation unit. The instruction fetch unit reads

instructions from memory and controls the flow of program. A guard generation unit

generates guard bit for the processor and load-store unit provides an access to data

memory where variables with long lifetime can be stored. Functional unit has at least

one input and one or more outputs. Inputs of FU are always registered. An input register

is either an operand or trigger register. Basically trigger and operand register are similar:

both provide storage for input data, but there is an important difference: when data is

fed to trigger register it initiates a new operation. If FU supports multiple operations an

operation code (opcode), which selects what operation is performed, have to be received

concurrently with data to be latched to trigger register from socket. Pipelining can be

considerable subject when execution of operation takes more than one machine clock

cycle. Each FU can be pipelined independently. Hybrid and Virtual time latching (VTL)

are the most common latching methods, and they are described in [1] with some other

pipeline control disciplines.

In this thesis, semi virtual time latching (SVTL) is used. The SVTL allows operands

2. Transport Triggered Architectures 15

to be fed to the unit before the trigger input, which starts a new operation. It makes

scheduling of the operation easier and gives some scheduling freedom but there has to

be shadow registers in operand input and that is more complex than True virtual time

latching (TVTL). In the TVTL, all the operands have to be fed at the same clock cycle

and all the operands start the new operation.

TTA microprocessors require general purpose registers (GRP), which store the interme-

diate values with short lifetime. One or more Register file (RF) contains GRPs. RFs

communicate with others units like a FU, via interconnection network.

2.2.2 Interconnection Network

Interconnection network (IC) provides a path where FUs and RFs can exchange data.

In IC there are two simple modules: sockets and busses. Sockets feed data from busses

to FU/RF and they feed data from FU/RF to busses. Beside, the normal functionality,

to provide data transport capability, busses also distribute signals that control the trans-

ports. Controlling signals are source and destination IDs and processor locking signals.

Sockets provide connectivity between busses and RFs or FUs. There are two kinds of

sockets: input and output. Input sockets move value of one of the bus to the destination

and they basically are multiplexers. Input sockets are connected to one or more bus and

at least one RF or FU. Output sockets move value of source register to one or more

busses. Example of both kinds of sockets is in Appendix A. Destination and source of

moves are defined in instruction word and these are described in chapter 2.2.4.

2.2.3 Transport Pipelining

Apart from functional unit pipelining described in section 2.2.1, the instruction execu-

tion can be pipelined in TTAs. This is called transport pipelining. Typically transport is

pipelined using three stage mechanism, which consists of instruction fetch, decode, and

move stages. Decode and move stages can be combined for two stage pipelining.

In the instruction fetch stage, the next instruction is read from the instruction memory

or cache. In the decode stage, the source and the destination fields for the sockets are

decoded from the instruction word and transported to sockets. Feeding the information

of the source and the destination activates the data transports to FUs. In the move stage,

the actual data transport takes place. Data is copied from output of a FU/RF to input

register of another FU/RF.

2. Transport Triggered Architectures 16

gr
d

im
m source iddestination id designated immediate fieldgr
d

im
m source iddestination id...

Moveslot 0 Moveslot m

Figure 3. Instruction word format. grd: guard, imm: immediate, and id: identifier.

2.2.4 Instruction Format

The instruction word format in a TTA processor, depicted in Fig. 3, typically consists

of as many fields as processor contains busses and one, the amount is not restricted,

optional field for a long immediate. Each field specifies an independent concurrent data

transport from a source to a destination.

Each field, except immediate field, consist of a guard identifier (ID), destination ID,

and source ID as shown in the Fig. 3. The guard ID is used by the guard unit of TTA

processor to control the execution or squash the move operation. Destination ID is

used to select an input socket where the data is to be sent. The source ID is used to

select an output socket as a source from where the data in transported to the destination.

Destination and source IDs contain a socket address and an optional opcode. The socket

address is used to select the socket and the opcode is sent in the move stage to the FU

to select operation which the FU to be performed is to the input data.

In TTA, each field of the instruction word can be used to represent immediate value

extensions. These extensions are used to construct long immediate. In such a case,

whole field is used to represent the long immediate. For the controlling when the field

is used for the long immediate extension, a dedicated long immediate extension tag

exists at the beginning of the instruction. The tag specifies in each instruction, which

of the moves is used for normal data transport and which for long immediate extension.

Instruction word can have a dedicated field for long immediate bits even if the immediate

extension is used. This field is only used to construct a long immediate value.

For shorter immediate values the value of the source opcode can be used to transport

the short immediate bits. The length of a short immediate is restricted to the size of the

opcode field of the source ID.

2. Transport Triggered Architectures 17

processor

netlist

layout /
parallel Move code

architecture description

application
description
in a HLL

technology

cell library
description,

hardware subsystemsoftware subsystem

explorer

Figure 4. General organization of the MOVE framework.

2.3 MOVE Framework

The MOVE Framework is a set of software tools that can automate the design of Ap-

plication specific instruction set processors (ASIP). It has been developed in Delft Uni-

versity of Technology, with some further development at Tampere University of Tech-

nology. Processors designed with MOVE framework are based on TTA. The scalability

of this architecture allows processor configuration to be optimized for a selected ap-

plication. Furthermore, the flexibility and simplicity of the TTA allows function units

specific to the given application to be easily integrated with the framework to enhance

performance.

The basic idea of MOVE framework is that the user described the desired functionality

in a high level language, C code. Next step is that user tells what recourses are avail-

able in machine description file, which is a complete textual specification of the target

processor architecture. Machine description file contains a set of architectural parame-

ters. These parameters fully describe the essential characteristics of the target processor,

such as number and type of FUs, and number of transport busses, etc. Now MOVE de-

sign space explorer can find the best possible cost/performance ratio with the aid of

MOVE scheduler, simulator, and estimator. After exploration user selects best available

processor configuration and generates automatically, with MOVE processor generator,

hardware description language description, for example VHDL, of target processor. The

organisation of MOVE framework is shown at Fig. 4.

Design space exploration is composed of two separate tasks: recourse optimization and

connectivity optimization. Recourse optimization consists of the finding the right match

of resources. The goal of resource optimization is to reduce costs without a performance

lost. Connectivity optimization determines the connectivity between busses and sockets.

The resulting connectivity is based on the communication requirements between the

2. Transport Triggered Architectures 18

Design Point #i
(Machine+Statistics)

Mapper & Scheduler

SimulatorCost Estimation

Parallel Code #i

Sequential Code
Maximum

Resource Set

Application
in HLL

Compiler Front-End

Cost Database
area, energy, delay

Design Space Exploration

Machine Description#i

Resource Selection

cycles#i,
utilizations#i

Statistics#i
utilizations#i, area#i,

clock period#i,
 cycles#i, energy#i

Figure 5. Role of Estimator in exploration procedure

FUs and the RFs. The goal of the connectivity optimization is to reduce the bus load,

and thus the cycle time. For each configuration the scheduler, simulator, and estimator

is called to obtain the cycle count of the code on target machine and the estimation of

processor cost such as area consumed in silicon and energy consumption.

The cost estimator has an important role in the design space exploration, illustrated

in Fig 5. As the figure shows, the sequential code, maximum resource set and cost

database is fed to design space exploration. In the exploration procedure the processor

configuration are evaluated after each modification, i.e., to know if the modification

should be applied or not. Tools to be used to evaluate processor configuration are cost

estimator, scheduler, and simulator. From the scheduler and simulator the cycle count

and activity of components are fed with the cost database to the cost estimator. As an

output the estimator provides an evaluation of target processor in terms on silicon area,

energy consumption and timing. At the first round of exploration process the maximum

set of resources is used.

The estimator considers FUs, RFs, buses, input and output sockets, and the control logic

in the estimation process. Control logic consisting beside of control signals, registers

for program counter, long and short immediate, return address for jumps and instruction

word. Memories are excluded from the processor evaluation.

The processor generator is a software tool that performs a transformation from one

source hardware description language to another. In this case, the transformation means

converting the description presented in internal format of MOVE framework to a generic

standardized hardware description language, e.g., VHDL, which represent the processor

2. Transport Triggered Architectures 19

design in a format that is not dependent on the MOVE framework.

The processor generator (MOVEgen) is stand alone processor generator for MOVE

framework written in python. It is command line driven, script”-like tool that obtains

name of two files, which are descriptions of target processor and required interconnec-

tion bus structure as command line parameter. Additional information, which is needed

for generation of VHDL, given in files external_interface and fu_conf. The file ex-

ternal_interface contains information about connections outside of the processor core,

e.g., to the data memory. The file fu_conf is containing information about the input and

output width’s of functional units and information of unit’s connections to outside of

processor core. Examples of both files are presented in Appendix B and Appendix C.

MOVEgen generates VHDL description of a target processor according to parameters

given by the user. The produced VHDL code can be simulated, verified and synthesised

with aid of the standard computer aided design tools that accept VHDL as entry lan-

guage, e.g., Modeltech Modelsim and Synopsys Design compiler [2],[3]. The creation

of processor core and simulation of processor are presented in 5.2.

3. TECHNOLOGY CHARACTERIZATION

In this chapter, the principles needed for technology characterization for application

specific integrated circuit (ASIC) are described. Here a standard cell technology is

characterized for needs of TTA architecture, which uses four different building blocks,

as shown in Fig. 1, functional units, internal registers, interconnection network and

control unit, which contains the instruction fetch and instruction decode units. The

proposed technology characterization is independent of the target technology, i.e., no

matter what the target technology is the characterization principles can be applied. The

area characterization principles can be used straight for needs of FPGA, but the energy

characterization will have some problems with it.

The basic principle is to build a library that contains information about area cost and

energy consumption of components, which are needed in generating costs of all com-

ponents, and component specific information, which allows their identification.

All components except control are modelled by delay, which describes how fast the

current component is. In other words, if component is between registers, delay tells

how high clock frequency can be in order to get right costs of selected component. If

component is not between two registers, there has to be a chain of delay of components,

until the chain of components is between two registers. Now the sum of each compo-

nent’s delay in component chain describes the highest possible clock frequency. Fig. 6

(a) illustrates FU’s and the interconnection network between them. There are 10 dif-

ferent chains of delay. The interconnection network and the presence of functional unit

operation logic, i.e., there is no register at output of FU0, is presented in Fig. 6 (b). The

outputs of FU1 are registered, as well all the inputs, resulting delay chain of intercon-

nection network. As the output of FU0 is not registered, which results a situation, where

the delay of the FU0 has to be summed to the delay of interconnection network. The

delay of interconnection network is sum of throughput delays of output socket, input

socket and bus.

The area cost figure is determined in equivalent gates and the unit of energy cost figure

is Joules per usage, except the static energy cost figure and the control energy cost figure

3. Technology Characterization 21

FU0 rdata FU1 r2data FU0 tdata FU0 odata FU1 tdata FU1 odataFU1 r1data

Ena

Output
Socket

Output
Socket

Output
Socket

Socket

Input
Socket

Ena
Ena Sel Sel

Bus0

Bus0
Bus1
Bus2

Bus1

Bus2

Input
Socket

Input
Socket

Sel

Input
Socket

Sel

FU0

tdata odata rdata

FU1

odata r2data

a)

b)

r1datatdata

Fu0
op. logic

Fu1
op. logic

Figure 6. a) Connection diagram of FU0 and FU1 b) data path of and-or bus between FU0 and

FU1.

which are given in Joules.

The static energy cost figure is calculated for all components as follows

EStat ic
� Ptdelay (1)

where EStat ic is static energy cost figure, P is the leakage power acquired from power

compiler, tdelay is component operational delay. The static energy is usually small and

it can be left out from calculations of costs.

Following chapters describes how the library of each component is built and how costs

can be calculated from library information.

3.1 Function Unit

Functional unit is modelled by its operation set, pipeline, latency, data width, number

of input ports, number of output ports, and delay: operational and output. If there is a

possibility to have same model with different implementation of same functional unit,

3. Technology Characterization 22

Table 1. Match types for functional units.

Parameter Match type

operation set exact

pipelining exact

latency exact

delay exact, subset

data width exact, interpolation

number of ports exact

implementation exact

there is a possibility to use implementation as well as parameter in modelling. With

these parameter sets all functional units can be modelled separately. The match types

supported for FU parameters are presented in Table 1. Definitions of match types are

presented in Table 5.

3.1.1 Characterization Parameters

The operation set contains all the operations supported by functional unit. For exam-

ple, functional unit which performs addition, subtraction, and addition and subtraction

simultaneously has an operation set of add, sub and addsub(add_sub_addsub).

Pipeline is describes the pipelining behaviour of unit, the number of pipeline stages,

by terms pipeline control method and operation pipelining or operational pipelining.

Pipelining behaviour is somewhat bound to parameter latency. Term none for pipeline

control method is describing situation in which the pipeline does not occur. Usually the

FU contains registered input, depending on parameter latency. Pipeline control method

SVTL is describing case where unit is SVTL pipelined, presented in 2.2.1, i.e., the FU

has registered inputs and outputs. The SVTL pipelining is describing the minimum

latency of 2. Operation pipelining consist the number of total pipeline stages and the

information on which operation in operation set is using specified pipelining stage.

Latency describes the total amount of clock cycles, which are needed for FU to perform

the operation. Latency is somewhat bound to pipeline parameter. When latency is 1 the

pipeline control method parameter has to be none and the latency parameter describes

3. Technology Characterization 23

the presence of input register. If latency is 0, i.e., FU is an asynchronous design, the

pipelining behaviour parameter is also none and FU has no registered input or output.

data width describes the width of inputs and outputs. If only one value is presented the

width of all inputs and outputs are the same. When output width is different from input

or when the width of input or output of unit differs from each other, all the input and

output widths have to be described separately.

Number of input and output ports describes how many input and output ports are present

in FU.

delay consist two fields: operation delay, and output delay. The operation delay de-

scribes how much time an operation or a pipeline stage in functional unit takes; it is

always either the slowest operation in unit’s operation set or the longest pipeline stage.

If the pipelining behaviour of a unit is SVTL or SVTL and operation pipelining, the

operation delay describes straight how high clock period can be used with selected unit.

The output delay describes the delay from the last register to the unit output. If output

delay is not zero, the delay must be taken into account in generating the delay chain. The

output delay is somewhat bound to operational delay and pipelining. When pipelining

is zero the output delay is same as operational delay, because there is a register only in

the input of the unit. When pipelining is set to SVTL or SVTL and operation pipelining

the output delay is zero, the last element of the component is a register. When pipelining

is set to operation pipelining the output delay describes the time, which the functional

unit takes from the delay chain, and this parameter defines the highest clock frequency.

The clock frequency is depending on other components which are connected to the out-

put of a functional unit. Delay chain is complete when all the components in chain are

between two registers or one registered loop. If there is a chain which does not contain

registers at the beginning and at the end of chain, the design is asynchronous.

Implementation is optional. If there is no implementation parameter all sufficient param-

eter sets uses the same implementation. Implementation parameter is simply a string

which separates different implementations. For example FU with operation set add,

pipelining SVTL, latency two, data width 32, and two different implementations carry

look ahead adder and ripple carry adder, the implementation parameters, for example

CLA and RCA, have to be used. If implementation parameter is not used in the previous

case, the modelling of FU may be incorrect, and costs of FU are not reliable.

3. Technology Characterization 24

Table 2. Match types for register files.

Parameter Match type

read and write ports exact

number of registers exact

delay exact, subset

latency exact

data width exact, interpolation

implementation exact

3.1.2 Characterization

Area of unit is acquired from synthesis of unit. Energy dissipation is acquired combin-

ing of synthesis and gate level simulation. For gate level simulation, the activity of input

ports is random, i.e., there is 50 percent possibility to each input port bit to change. Load

signals are active when input changes, except for idle operation, where the load signals

remains zero for all the time. Energy for each operation in the operation set is acquired

separately, by setting operation to select the opcode corresponding to the wanted oper-

ation. The energy per usage is acquired from power given by power compiler [3], as

following

Ecost
� Ptclklpi peline (2)

Where Ecost is the energy cost figure, P is the power acquired from power compiler, tclk

is clock period, and lpi pel ine is the length of the operational pipeline of the operation.

3.2 Register File

Register file is modelled by the number of read ports and the number of write ports, the

number of registers, data width, latency, and delay: operation, input, and output. There

is possible to use an optional parameter, which describes the implementation of register

file. The match types supported for RF parameters are presented in Table 2, and the

match types are presented in Table 5.

3. Technology Characterization 25

3.2.1 Characterization Parameters

Number of read ports describes how many read ports are available and how many si-

multaneous reads can be performed. The number of write ports describes how many

write ports are present and how many parallel writes can be performed.

The number of registers describes how many register slots is available in register file,

i.e., how many values RF can hold before older values are overwritten.

The latency describes the delay in clock cycles in which for the data written to the

register can be read from the register.

Parameter delay consist three fields, input delay, operation delay and output delay. In-

put and output delay are treated similarly to the output delay presented in 3.1. The

input delay is describing the time consumed before first register and the output delay is

describing the time after last register, which have to take account in forming of delay

chains. The operation delay is describing the time between registers in register file; the

operation delay can be zero, if register file contains only one register in chain.

datawith is the word width of registers.

3.2.2 Characterization

Area of RF is acquired from synthesis of RF. The operations of RF is obtained by com-

bining all possible simultaneous reads from RF and writes to RF, i.e., for RF with one

read port and two write ports with capability to work parallel, the number of possible

operations are six: 0:0, 0:1, 0:2, 1:0, 1:1, and 1:2. Energy dissipation is acquired com-

bining of synthesis and gate level simulation. For gate level simulation, the activity of

the write ports is random, i.e., there is 50 percent possibility to each write port bit to

change. Load signal of specific operation is active when input changes, except when RF

is not reading or writing, where the load signals remains zero. Energy for each operation

is acquired separately, by setting the load signals to the corresponding operation. The

energy per usage is acquired from power given by power compiler [3], as follows

Ecost
� Ptclk (3)

Where Ecost is energy cost figure, P is the power acquired from power compiler, and

tclk is clock cycle of the synthesized component.

3. Technology Characterization 26

Table 3. Match types for interconnection network.

Parameter Match type

fanin exact, interpolation

fanout exact, interpolation

delay exact, subset

data width exact, interpolation

implementation exact

3.3 Interconnection Network

As described in chapter 2.2.2 the interconnection network consists of three different

types of elements: input socket, output socket and bus. The characterization is done

with three bus types: and-or, tristate, and mux busses. In each type, there are some

special features: all three bus type haves input socket, output socket exists at and-or

and tristate buses, and bus exists at and-or and mux buses. For tristate bus, the output

socket contains bus element and for mux bus the element bus contains output socket.

For the estimation procedure all three elements are present, but for cases where only

two elements exist, the third element costs are zero. Because of difference in element

numbers, depending on bus type, all three types of elements have to be treated similarly.

Only one type of bus can be used in characterization at the same time. The match

types supported for IC parameters are presented in Table 3, match types are presented

in Table 5.

As mentioned the interconnection network consists of three types of components: input

socket, output socket and bus, the Fig. 6 (b) represents the logic diagram and principle

structure of an and-or bus, which is mostly used in our approaches. The input socket and

output socket contains multiplexers and and-gates, respectively. The actual bus contains

an or-gate.

3.3.1 Characterization Parameters

Interconnection elements are modelled by fanin, fanout, datawidth, and delay: control

and throughput. There is possibility to use an optional parameter which describes the

implementation in interconnection element.

3. Technology Characterization 27

Fanin describes the number on inputs of IC element and fanout describes number of

outputs and the load which component is driving. Usage of fanout is depending on what

is next to component. For example, if input socket is driving a trigger port of FU and

a trigger port of RF with register size of 4, the fanout in calculation is 5, because FU

trigger port behaves like load 1 and RF with size of 4 like behaves like load of 4. One

socket port is calculated of load of 1.

Data width describes the data width of inputs and outputs of component. The data

width is always same for all components, if the data width for inputs or outputs varies

for component which costs wanted to find, the costs can be found from characterized

components by combining them, presented in Fig. 7. All of the combinations can be

found in such way. If the input width is smaller the extra output bits are generated,

either sign extension or extension, and if the output is smaller the extra bit in input

are just ignored, i.e., if the input and output widths differ the smallest is those is taken

into account. The sign extension or extension logic costs are ignored, because they

are insignificantly small. For components which contains different data width of fanin,

fanout, or both ports. The component have to divide to smaller pieces to get all possible

fanin, fanout, and datawidth possibilities. At Fig. 7 (a) is input socket with fanin 6

and fanout 3, the fanout is describing the number of output ports. The final fanout is

depending on the components connected to socket. The data widths of input ports are

4, 8, 16, 16, 32, and 64 bits and the data widths of output ports are 32, 16, and 16. Now

is needed to divide the input socket to smaller pieces, number of needed pieces are four,

as shown in Fig. 7 (b). The first subcomponent has fanin 6, fanout 3 and data width 4

and the second has fanin 5, fanout 3, and data width 4. The third has fanin 4, fanout 3,

and data width 16 and the fourth has fanin 2, fanout 1, and data width 16.

Delay describes the component’s throughput delay and control delay. To get the total

delay of total interconnection chain, all the three throughput delays must be summed:

the output socket delay, the bus delay, and the input socket delay. The component

control delay describes the time the control of component takes, for our design the

control delay is necessary for input socket, because the input socket control is ready

at the beginning of clock cycle and the data arrives from bus much later, leading to

a situation where throughput delay has to be much smaller than control delay. The

control delay has to be smaller than the final clock cycle of the processor. When the

component is divided to subcomponents, the throughput delay is approximated by the

largest possible subcomponent and for the control delay is the actual component largest

possible control delay, as in Fig. 7 (a), the control delay approximation would be for the

3. Technology Characterization 28

0:3

0:7

0:31

0:15

0:63

0:15

0:15

0:31

0:15

a)

0:3

0:3

0:3

0:3

0:3

0:3

0:3

0:3

0:3

4:7

4:7

4:7

4:7

4:7

4:7

4:7

4:7

8:15

8:15

8:15

8:15

8:15

8:15

8:15

16::31

16:31

16:31

b)

Figure 7. Input socket: a)component and b)subcomponents.

component control delay, which have datawidth 32, fanin 6 and, fanout 3.

3.3.2 Characterization

Area cost figure is generated by synthesizing IC elements. Required area of IC ele-

ment is acquired from area cost figure of element. When element is divided to smaller

pieces the required area of element is acquired from the sum of area cost figures of sub

elements.

For each component there are 2 energy cost figures; active energy and idle energy. The

energy cost figures are obtained similarly as in equation 3. For active energy gate level

simulation, the activity of input ports is weighted towards changing, i.e., there is 70

percent possibility to each input port bit to change. The percent value is acquired from

simulations of test cases. For idle energy the component is simulated to be at state when

no control part is moving. For the and or-bus type the output socket control is set for

not to select anything, leading to outputting zero, in idle state, and for the bus the input,

when component is idling , is zero leading to outputting zero. For the input socket

the activities of the inputs are slightly reduced, the possibility to change is 55 percent,

because when component is idling, the previous component might also be in the idle

state. For Three state- and MUX bus types the output socket and bus write is combined.

For the Three state bus type the output, when idling, is floating in high impedance state.

For the MUX bus type the idling output is zero. The bus technology defines the way the

energy cost figure is generated.

3. Technology Characterization 29

3.4 Control Characterization

The used model for control characterising is fairly simple. It takes account the number

of needed instruction registers and scales the number of registers to level of connections

of interconnection network.

Control logic is modelled by connectivity and time.

The connectivity parameter describes the relative connectivity of the interconnection

network. It is computed as a ratio between the numbers of connections in the intercon-

nection network, considered divided by number of connections in the fully connected

version of the same interconnection network.

time describes the clock period used in synthesis of characterization process. It is used

to calculate the energy value correctly.

Area cost figure is area of one register element in the control block for the given con-

nectivity in equivalent gates. The area cost figure is obtained as follows

Areg
�

A
nregs

(4)

where Areg is area cost figure of one register, A is the area given by design compiler,

and nregs is the number of registers in control unit.

The energy cost figure is energy dissipation of one register element in the control block

for given connectivity. The energy cost figure is acquired from synthesis of architecture

as follows

Ereg
�

Ptclk

nregs
(5)

where Ereg is energy cost figure of one register, P is the power given by power compiler,

tclk is clock cycle in which the component was synthesized, and nregs is the number of

registers in control unit. The effect of the leakage energy is left out from the control unit

characterization.

3.5 Generation of Cost Figure Database

Principles presented above, the cost figures can be generated and combined in form of a

database of costs (costdb). From costdb the estimator can search for cost of components

and calculate the total cost of area and energy for TTA processor. The costdb is the

3. Technology Characterization 30

heart of accurate estimation. In the database lies all the information about the costs of

TTA components, i.e., FUs, RFs, buses, input and output sockets, and control logic. An

example of a part of costdb in presented in Appendix D.

For costdb there have to be all components that are used in the estimation procedure

of processor, because if a component is not found, or cannot use subset or superset of

other component, the cost of processor is not valid anymore. Only exception is when

user wants to evaluate performance of processor regarding of the costs, there can be

used such components which not have an entry in costdb. That is why the cost database

is usually large, but it is needed to generate only once and then add new components, if

necessary. Generation of cost database is based on combinations on usage of Synopsys

Design compiler and Modeltech Modelsim. Modelsim is used to achieve gate level

activities of desired operation of desired component.

The cost database generator is a program, which creates the costdb. Generator reads

VHDL package files and characterizes file contents with principles presented above.

The VHDL package files, for FU, RF, IC, special function units (SFU), and control unit,

contains every component entities which ought to be in database. The SFU package

contains every user specific units, which the user wants to use in TTA processor.

When the generator is started, it checks, if any of the VHDL package files has been

changed. If no package has been changed the generator evaluates if any of the compo-

nents in the package are changed, if none is changed the generator does not do anything.

When some of the files have been changed the generator characterizes the changed

components. If an existing component is changed the generator replaces old results in

database with new ones. If there is a need to add component to database, it can be done

in three ways with command line parameter presented in Table 4; Component is charac-

terized separately, or added to existing package, or create new package for component.

For user point of view the generation procedure is very simple; user only starts the

generator, which creates the entire database. The file structure has to be set correctly

with the command line parameters of database generator. Generator accept command

line parameters presented in Table 4.

Help prints out the usage help of program and the create parameter starts the creation of

database.

package creates the package list and it can be used to [-a] add or [-r] remove packages

from package list, or to create cost figures of one specific package. The package type

option is used to define which type the package is: FU, SFU, RF, input socket, output

3. Technology Characterization 31

Table 4. Parameters of database of costs Generator.

Parameter Option

-pack [-a][-r][name of package][package type][location of package]

-comp [name of file][entity1,entity2,...,entityN][component type]

[location of file][-a][-r][name of package]

-loc [-temp][location][-src][-a][-r][-d][location][-pac][-d][location]

-act [-act][type][input activity][-idle][type][input activity]

-help

-create

socket, bus, or control. The information of package type is needed to place generated

cost figures to right place in database. The location of package is optional, when the

location is not given the default package location is used.

component is used to [-a] add or [-r] remove components from packages, or to create

cost figure of on specific component. The name of VHDL file and the name of entity or

entities must be given. If the component contains multiple entities the top level entity

must be given first. Component type is dealt similarly as package type. The location of

component is optional, if it is given, it is stored to source location list. If location is not

given, component is searched from source locations. If component is added to package

which does not exists, the package will be created to the default package location.

location creates the location list, where the temporary location, locations of source files,

and location of package list is saved. At the location list there is possibility to [-a] add

or [-r] remove source search locations, and set the default location for source. With

the [-d] parameter the default location of source list can be changed. If the default

location is not set, the generator uses the location where the generation is started as the

default location for source location list. Option [-temp] is used to modify the temporary

location, in which all temporary files generated by generator is stored. With option [-

pac] the location of package list can be modified, [-pac] [-d] option is used to change the

default location where packages are. In both cases, the default location is same folder

where the generator is started.

activity is describing the input bit wise probability, in percents, to change for active and

idle sequence. If option type is describing which type, i.e., FU, the activity parameter

3. Technology Characterization 32

is used for. If the type is not given the activity is used for all components. The default

activity is 50.

create is used to start the generation procedure. The generator generates all changed

components in package list, if not specific component or entity is not wished to generate

with package or component

It is possible to edit every list by hand, but it is not recommended. Any parameter by

them self, except create and help, prints out the parameters and possible lists containing

parameter specific information.

4. ESTIMATION FOR TTAS

Automated design space exploration is one of the most interesting tool for designers in

the area of customizable processors. By trawling through the design space and notifying

the most interesting target processor configurations, exploration tool assist the designer

to find the most suitable resources for the best configuration. Cornerstone of exploration

tool, in addition to effective exploration algorithm, is the hardware cost estimator, which

has to be fast, accurate enough, and technology independent [4].

The estimation on hardware costs procedure is based on information on area, energy

and timing statistics of the hardware resources. First, each hardware resource has to be

characterized on a given technology. After that, the area and energy of a target processor

for the certain timing statistic can be evaluated based on this information.

The estimation procedure requires the information of the technology, which is used to

implement the target processor. And thus, the estimator is needed to be technology

independent. A description at a higher abstraction level is used to provide the physical

information of the target technology. This description is structured as a database of

costs of characterized components, thus called the cost database. Now the estimator can

be technology independent, because the information about used technology lies on cost

database, or to be exact in the creation of cost database. Now the used technology can

be easily changed.

Estimation is based on data queries from cost database; each query contains a search

key for hardware components. Each hardware component is specified by some of prop-

erties described in chapter 3. The characterization parameters work as search keys for

estimation procedure, because the parameters identify the component. All the param-

eters are not needed in search, but all of them are used to select the right component

in each case. Estimator searches through database for the matching component. When

the perfect match is not found, the statistics of other components can be utilized in the

evaluation, if the behaviour of the resource supports that. There are four different match

types: Exact, superset, subset or interpolation match. The match types are presented

in Table 5. In chapter 3 the supported match types for the properties of components

4. Estimation for TTAs 34

Table 5. Supported match types.

Match type Explanation

Exact match An equal characteristics is found from database

Superset Greater characteristics or a superset is found from database

Subset Smaller characteristics or a subset is found from database

Interpolation Smaller and greater characteristics is found from the database.

Linear approximation is used for calculating new statistics

for the new database entry

are described. For three first match types the cost figure values of components are not

changed, but for the interpolation match the cost figures are computed for a new entry,

but the database will not be changed at any situation.

For the correct data path of components the estimator must make sure the component

data path has register at the beginning and at the end of path, i.e., component is between

two registers. If the component is not between two registers, the next component should

be added to data path as long as the chain of components is registered. The total delay

of chain of component is called chain delay, presented in Fig. 6, which describes the

total delay of components in delay chain. The chain of components is created by min-

imizing the costs of chain, area, and energy. When the total processor is evaluated, the

Estimator finds the critical path, the longest delay or delay chain, and slows down other

components or chain of components. The slowing down is performed when costs of

component or components are lower. The maximum amount of delay is the cycle time,

given by user or design space Explorer.

4.1 Estimation Procedure

Total area of the target processor configuration is obtained by the sum of area of each

hardware component as

A � ∑AFU
� ∑ARF

� ∑AIC
�

ACNT RL � (6)

The energy consumption of target processor is obtained by summing up energies of each

hardware component as

E � ∑EFU
� ∑ERF

� ∑EIC
�

ECNT RL � (7)

4. Estimation for TTAs 35

Table 6. Calculation of FU energy.

Operation Usage EOP pJ E nJ

Add 7716 9.228 71.20

Sub 4352 9.799 42.65

Idle 8219 0.3552 2.92

Static 20278 0.82 aJ 0.02 pJ

Total 20278 116.77

Parameter value Parameter value

operation set add_sub pipeline SVTL

latency 2 operational delay 8.02

data width 32 input port 2

output port 1 output delay 0

clk 10 ns

4.2 Function Unit

Area of a unit can be read straight from the area cost figure. The calculation of total

energy consumption is obtained as follows

EFU
���∑

i
EOPUOP � �

EI
� nc � ∑

i
UOP � � ESnctclk

td
(8)

where EOP is energy of operation i, EI is idle energy and ES is the static energy due

to leakage current, UOP is number of usage of operation i, nc is the number of cycles

executed in simulation, tclk is the clock period, and td is the time of operational delay.

The parameters EOP, EI , ES and td are obtained from characterization of component,

while the parameters UOP and nc are obtained from the instruction set simulation. The

clock period, tclk is defined during the resource selection.

Table 6 shows an example of calculation of energy dissipation of FU with two input

ports and one output port, and performing 32-bit addition or subtraction. For energy

calculation the activity ratio of each operation is obtained from TTA processor perform-

ing two-dimensional (8x8) discrete cosine transform.

4. Estimation for TTAs 36

4.3 Register File

Behaviour of area in register file is similar to functional unit. The calculation of total

energy dissipation is defined as

ERF
���∑

r
∑
w

ERWURW � � ESnctclk

td
(9)

where ERW is the dynamic energy when r reads and w writes are performed in parallel,

URW is the number of times when r reads and w writes are performed. The case where

r is 0 and w is 0, i.e., the register file is idle, no reads or writes are performed. ES

is the static energy due to leakage current, nc is the numbers of cycles executed in

simulation, tclk is the clock period and td is the time of operational delay. The idle

energy is acquired for the RF by not activating inputs, the load signals remain zero,

and keeping the socket activity normal. Parameters ERW , ES and td are obtained from

characterising of component, while the parameters URW and nc are obtained from the

instruction set simulation. The clock period, tclk is defined during the resource selection.

Calculation of RF total energy consumption can be calculated following the principles

presented in example 6.

4.4 Interconnection Network

Area is achieved straight from area cost figure, if the component is not needed to divide

to subcomponents. If the estimation procedure requires the component division, the

area of component is the sum of areas of all the subcomponents, presented as follows

AIC
� ∑

i
Asub (10)

where AIC is area of interconnection element and Asub is area of subcomponent i.

For energy consumption calculation is defined as

EIC
���∑

i
EsubUIC � �

EI
� nc � ∑

i
UIC � � Esnctclk

td
(11)

where the Esub is the energy of subcomponent i, when the dividing to subcomponents

are not needed the Esub is the cost energy figure for whole IC component. If IC compo-

nent had to be divided to smaller pieces the activities of each subcomponent is acquired

to achieve more accuracy, when higher accuracy is not needed the subcomponents can

4. Estimation for TTAs 37

Table 7. Number of registers of control unit.

Element Number of register

Instruction register size of the instruction word

Program counter log2(instructions in application)

Return address log2(instructions in application)

Short immediate length of short immediate +1

Long immediate length of long immediate

Input sockets log2(connections to busses)-1

Output sockets busses driven

Boolean registers Boolean registers

Register file log2(registers)-write ports

Function unit log2(supported operations)+1

use the usage of whole component, UIC. The EI is the idle energy of component. Pa-

rameters EIC, EI , ES, and td are obtained from characterization of component, while

the parameters UIC and nc are obtained from the instruction set simulation. The clock

period, tclk is defined during the resource selection.

4.5 Control Unit

The area of the control unit is defined as follows

ACNT RL
� nregs

� A0
�

dAs � (12)

where nregs is the number of registers in the control, A0 is the base area of one register in

the control, d is the density of the interconnection network, and As the slope of the area

of one register in function of the density of the IC. E0 and Es can be obtained from the

energy cost figure and d is property of target processor. The density of interconnection

is a number between 0 and 1 defined as: number of connections between buses and

sockets divided by the maximum number of connections, i.e., fully connected, of the

processor with the same configuration.

4. Estimation for TTAs 38

The energy of the control network is computed as follows

ECNT RL
� nregs

� E0
�

dEs � (13)

where nregs is the number of registers in the control, E0 is the base energy of one register

in the control, d is the density of the interconnection network, and Es the slope of the

energy of one register in function of the density of the IC. E0 and Es can be obtained

from the energy cost figure and d is property of target processor.

The number of target registers in the control can be achieved by summing up all the

registers caused by properties of a target processor. Table 7 lists, the processor elements,

which generate the control registers.

5. IMPLEMENTATION EXPERIMENTS

During the work several different TTA ASIPs configurations were designed and evalu-

ated using the MOVE framework. The implemented processors were evaluated in terms

of silicon area and energy dissipation. In section 5.1, a power saving method, clock

gating, is evaluated and applied on TTAs. Section 5.2 describes the used design flow

of TTA processor. In section 5.3, the processors were implemented and the results of

the MOVE estimator was compared to the results of reference, the logic synthesis of the

same cases.

5.1 Clock Gating

In many VLSI systems, the reduction of power consumption has become one of the most

important design aspects. This happens for two main reasons. First component size has

become smaller and more transistors can be put to the square millimetre, resulting in

a density growth. In addition, there has been a growth of portable consumer electro-

nics. [5]

Power dissipation of clock systems becomes dominant in power consumption in large

chip. Clock switching activity is equal to one and node capacitance is high because

systems have high number of clocked nodes.

Most efforts for clock power reduction have focused on issues such as voltage swing

reduction, buffer insertion, and clock routing [6]. In many cases, swinging causes a lot

of unnecessary gate activity and for this reason reducing or suppressing the unwanted

switching of clock becomes an important method to reduce the power dissipation of

VLSI circuits. There are two ways to reach this result. First by eliminating wasted

power dissipation caused by the clock switching in non triggering direction. Nowadays

most of the flip-flops are single edge triggered. For example they are only sensitive to

falling edge of clock and the power consumption of the rising edge of clock is wasteful.

For this reason double edge triggered flip-flops have been developed, which triggers

both the falling and the rising edge of clock. Now the clock frequency can be reduced by

5. Implementation Experiments 40

q

clk

latch

dENA

CLK

gated clk

Figure 8. Clock gate module.

half while keeping the same data rate resulting power dissipation to reduce [7]. Second

method uses technique called clock gating, which blocks clock to the flip flops while

flip flops are in idle state. In clock gating, clock routing is also a good way to reduce

the power dissipation even more [8].

Clock gating is a design strategy that allows to significantly reducing the switching

activity of the clock tree and its leaf registers [9]. Clock gating has been viewed as one

of the most effective approaches to minimize power. In order to reduce the activity of

the clock node of a register bank, the clock node is enabled only when the register bank

has to sample a new input. Unfortunately when clock gating is applied in uncontrolled

fashion, the power consumption of clock tree may increase. In order to reduce the power

consumption, several flip flops have to be driven with same clock gate node. If flip flops,

which share the same gated clock are, widely dispersed over the chip a significant wiring

overhead is induced in the clock tree. This result in larger capacitance in clock drivers

in each domain and power consumption may increase even if the switching activity is

decreased [8].

5.1.1 Clock Gating on TTA

In MOVE framework, register enable signals for input and output registers of FU or RF

are automatically generated, thus those signals can be used for the clock gating control

signal. This reduces power consumption of idle units, i.e., unit, which is not used during

the clock cycle. The power from clock tree is reduced, because the capacitance in clock

tree is reduced when clock not have to drive all the flip flops, only those which are

active. Clock gating methodology is shown in Fig. 8. For each set of flip flops, which

are controlled by the same enable signal, there is one clock gating block. This means

that each registered input or output of FU or RF have one clock gating block.

If registered input or output is small, less than three bits, the additional latch and logic

will increase power consumption, because the clock have to drive more capacitance

when port is idle compared to result that port is active. In such a case, a single AND

5. Implementation Experiments 41

logic port for can be used for clock gating, but it must be guaranteed than the control

signal is stable before the low edge of clock.

It is clear that more power will be saved when the activity of gated registers is low.

If the activity is very high latches, in clock tree may produce an increase in power

consumption compared to non gated clock.

Clock gating can be done by Synopsys Design Compiler [3] automatically, or it can be

done by hand, adding the required clock gating elements to the design. In this work,

Synopsys Design Compiler was used to generate the clock gating logic.

5.1.2 Implementation Experiments of Clock Gating

The effect of clock gating was evaluated with six different configurations presented in

Fig. 9. Configurations A, B, and, C are were run with clock frequency of 100 MHz and

the rest were run with 200 MHz. The case where the clock is gated is numbered as 1.

In Fig. 9(a) and Fig. 9(c), gating effect on area of processor are shown and in Fig. 9(b)

and Fig. 9(d) the effect on power dissipation.

If the node activity is high, (the configuration F), the clock gating resulted in no power

saving and when activity is low the power saving were around 30 to 50 percent compared

case where the clock gating is not used. The largest power save were at register files,

because they contain several registers, which can be gated. In addition, if the RF is

not accessed the entire bank can be gated. Functional units are also potential for clock

gating.

At the interconnection network, the power consumption was increased. While in the IC

there are no registers, the clock gating should not have an effect. The problem lies on

increasing complexity of clock tree, which causes decreased timing of interconnection

network. When the timing is tightened, more buffers are needed to fulfil the timing

requirements, especially if the bus is in the critical path. This is the main reason for the

extra power dissipation. The problem with interconnection limiting the power saving

can be solved by decreasing the interconnection connectivity, to reduce the capacitance

of the bus.

The total savings on the power dissipation were significant. Library components (FU,

RF, and IC) are easier to design when the synthesis tool is allowed to do the necessary

clock gating.

5. Implementation Experiments 42

DCT8x8

0

10000

20000

30000

40000

50000

60000

70000

80000

A
re

a
 E

q
 g

a
te

s

Others 0,75 26,25 11,75 11,75 2,75 1,75

cntrl 10367,25 9670,25 4340,5 4651,75 1721,75 1751,25

IC 22705,75 22735,5 4340,5 4651,75 2069,25 2053,5

RF 22303 26817,5 24072 28973 8779,5 10523

Fu 8499,5 10143,5 6601 7958,75 6141,5 7172,5

A 1 A 2 B 1 B 2 C 1 C 2

DCT8x8

0

5000

10000

15000

20000

25000

30000

P
o

w
e
r

u
W

Others 2674,024 889,988 1115,37 737,363 677,155 829,255

cntrl 5100 5550 2720 3300 1180 1330

IC 7990 6830 2720 3300 1130 891,487

RF 2660,806 10410 3160,796 11690 1259,856 4903,268

Fu 2575,17 4620,012 2343,834 3462,637 942,989 2345,99

A 1 A 2 B 1 B 2 C 1 C 2

a)

c)

b)

d)

DCT32

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

P
o

w
e
r

u
W

Others 6369,564 1919,275 3078,626 1692,703 1600 1650

cntrl 9120 11100 5810 7650 3490 3450

IC 31800 20800 6770 7430 2580 2940

RF 10346,5 36820 2063,458 9605,813 5310 5480

Fu 5763,933 11460,73 5277,916 8321,484 5720 5680

D 1 D 2 E 1 E 2 F 1 F 2

DCT32

0

20000

40000

60000

80000

100000

120000

140000

160000

A
re

a
 E

q
 g

a
te

s

Others 1,75 1,75 1,75 2,5 1,5 1,75

cntrl 10324 11060,75 5308,5 7009,75 2302,75 2312,75

IC 35079,75 32043,25 10626,25 13076 2777,75 2661,5

RF 55650 82103,5 8034,75 12142,5 5004,5 5186,75

Fu 17619,75 20670,5 7697,25 9527,25 7378,5 7292,75

D 1 D 2 E 1 E 2 F 1 F 2

Figure 9. Clock gating results: a) area with 100 MHz clock, b) power dissipation with 100 MHz

clock, c) area with 200 MHz clock, and d) power dissipation with 200 MHz clock.

Each configuration has two cases: 1) with clock gating and 2) without clock gating.

5.2 Design Flow of TTA Processor

This chapter describes the design flow of TTA processor presented in Fig. 10. Design

starts with the selection of desired configuration. Selection is done with aid of MOVE

explorer. When configuration, which satisfied the specifications is found, MOVE pro-

cessor generator is used to convert machine description and binary mapping file, gen-

erated by MOVE scheduler, to hardware description language, VHDL. The generated

VHDL have to be verified. Verification can be made by any commercial simulation and

synthesis tool. In this case, Modelsim were used for simulation and Design compiler

for synthesis.

5. Implementation Experiments 43

High level

Description

Selecting available

resources

Resource

Exploration

Connectivity

Exploration

cycles

ok

no

other requirements
A

d
d

 r
e

s
o

u
rc

e
s
/D

e
s
ig

n
 S

F
U

no
yes

Layout Desinging

Synthezation and

gate level

simulation

RTL level

simulation

Generation of

HDL description

results

ok

no

results

okno

Check costdb

Check HLL

c
h

e
c
k
 p

a
ra

m
e

te
rs

c
h

e
c
k
 p

a
ra

m
e

te
rs

Figure 10. Design flow of TTA processor

5.2.1 Configuration Selection

The resources that are available have to be specified in machine description file. At this

point, it is better to define additional resources, since the finding of optimal solution

can be left to the MOVE explorer. The MOVE explorer can be set not to remove cer-

tain resources, which allow recourses to be included although not needed by the given

application.

If performance requirements are not satisfied, the user can design special functional

units (SFU), to boost the performance. To acquire reliable results from the exploration

procedure, when using SFUs, the cost database must be modified for the significant part

of SFU costs, i.e., the costs of the SFU must be applied into database.

When the requirements for area, power, and cycle time is satisfied, the machine descrip-

tion file can be transformed to the hardware description language.

5.2.2 VHDL Generation

Transforming the machine description to VHDL can be done by MOVE processor gen-

erator, described in chapter 2.3. For the processor generator, the processor connections

to outside, the external interface, and the functional unit port widths have to be specified.

External interface contains connections to outside of processor core, for example to

data and program memory, which are specified in file external_interface. An example

of external interface is represented in appendix C.

5. Implementation Experiments 44

Functional units which have connections to outside of processor core or which have

difference in width of input sockets compared to width of busses, have to be specified

in file fu_conf. The only exception is the instruction fetch unit, which is specified in

external interface. The file fu_conf describes also the mapping of the memory ports in

the control unit. An example of fu_conf is presented in appendix B, where the follow-

ing functional units are specified: load store (fu5), control register (io1) and shift unit

(fu15), and the control mapping. In each unit, which has external connections, the port

mappings have to be equal to signals presented in the external interface. At this case, the

load-store unit has operand socket width of nine, this is the width of data memory add-

ress plus two bit of control part, which controls the loading and storing bytes and half

bytes and the trigger socket of shifter unit has width of five, this describes the maximum

amount of shifting (32).

When external_interface and fu_conf files are specified. The MOVE processor gene-

rator can create the VHDL files for movecore, interconnection and control. With com-

mand: movegen.py [name of mach file] -[bustype]. The movecore is the mapping file

which map together the processor components: IC, control, FU, RF, and external in-

terface, the interconnection describes the interconnection network and the control de-

scribes the control part of processor. The name of machine description file has to be

the same as the name of binary map file of processor, e.g., name.mach and name.map.

Bus type switch has three options: and-or, tristate, and mux, which describe the bus

type needed for the application. When generation of the VHDL files is successful, the

next step is verifying the correctness of estimation of processor costs and the design

parameters, which is described in next chapter.

5.2.3 VHDL Verification

The program memory contents have to be created from a memory image of parallel TTA

program. This operation is performed by MOVE binary reader (rdbin), with command

rdbin -b [width of block] [move parallel code]. Width of the program memory block

depends on the program memory type. At this design flow, the synchronous read only

memory (ROM) is used as the program memory. The memory width is equal to instruc-

tion memory width. Memory is organized as a look up table (LUT), where each line of

LUT contains one instruction word. The width of one memory block is bit width of the

instruction word. The output of rdbin has to be copied to the lut_pkg.vhdl file, when pre

designed testbench is used.

For the simulation of the processor the default testbench can be used. The default test-

5. Implementation Experiments 45

bench contains clock generator and moveproc component, which contains movecore,

data and program memories, and memory arbiter. Data memory is a simple synchronous

random access memory (RAM), which have either one or two access ports. The num-

ber of access ports of memory depends on used configuration. If the configuration has

one load store units, as in the presented example, only one access port memory is used.

Memory arbiter is used to control memory accessing. When simultaneous access oc-

curs, i.e., there is a memory access from external device, the external access is declined

and the memory busy signal is generated to inform that memory is reserved. Currently

the memory arbiter assumes that there is only one memory block.

For the simulation the global variables have to be adjusted. The data and program

memory address and data width’s have to be set to the current design. The required clock

cycle and total cycle count of processor is needed for simulation. All these parameters

can be adjusted in globals.vhdl file.

For the simulation of the movecore the components have to be compiled for Modelsim.

Here the compilation is performed with commands represented in appendix E, assuming

that existing library components, FU’s, RF’s, and IC’s, and user defined components are

already compiled. Following step is to run the simulation and verifying the output of

simulation against the output of MOVE simulator. For the synthesis of the movecore,

the MOVE processor generator creates an elaboration script which uses the automated

clock gating, represented in 5.1.1. The elaboration script works on Synopsys synthesis

tools. After the elaboration, the clock frequency has to be set for the synthesis of the

movecore. If the maximum clock frequency in needed the clock cycle time has to be set

to near to zero.

The design constraints, such as power consumption and silicon area, have to be verified

after the synthesis. To get more accurate results for power dissipation, the gate level

simulation has to be done by the Modelsim, or other simulator, to capture the switching

activity and toggle rate and generate the Switching Activity Interchange Format (SAIF)

file for the components of the synthesized design. The SAIF file, is fed to the power

analysis, which produced the power statistics of the components of movecore. The

consumed silicon area can be acquired right after synthesis.

The total procedure of verifying the VHDL can be done automatically with aid of the

existing synthesis and simulation scripts.

5. Implementation Experiments 46

Table 8. Implemented test cases.

Name Application FU RF IC cycles

A1 Viterbi 8 8/19 5/Full 6,705,916

A2 DCT8x8 60,399

A3 DCT32 597

B1 Viterbi 14 8/64 13/Full 1,848,524

B2 DCT8x8 19,519

B3 DCT32 379

C1 DCT8x8 5 4/8 2/Full 44,864

C2 2/Med 44,625

C3 2/Small 45,154

D1 DCT8x8 7 8/30 6/Full 20,479

D2 6/Med 20,831

D3 6/Small 22,640

E1 DCT8x8 9 8/58 12/Full 18,607

E2 12/Med 18,607

5.3 Test Cases

In this chapter, the results of Estimator are compared to synthesis results from Syn-

opsys design compiler. The used test sequences are discrete cosine transforms (DCT)

and Viterbi decoding. In DCT, there are two variations: two-dimensional (8x8) trans-

form and one dimensional 32-point transform. The results show the accuracy of tech-

nology characterization. All the cabilities of technology characterization could have

not been tested due to the limitations of MOVE framework tools. Not tested cabilities

were: parallel reads and writes, input and output delay for register file, fanin for out-

put socket, different pipelining lengths for functional units and automated generation of

delay chain.

The different test sequences were made by the principles presented in chapter 5.2. Con-

figurations of the processors are listed in Table 8. The application field is describing

what application is executed to acquire activities of components. the FU field is de-

5. Implementation Experiments 47

AREA

0

5000

10000

15000

20000

25000

30000

35000

E
Q

 g
a
te

s

RF 3468 3905,5 13156 13704 9299,25 9636,25 16059,8 17737,3 21459,3 22301,5

FU 7527,25 8105,25 13181 13889 6675 7009,75 7350,5 7631,5 8260,75 8500,7

A est A ref B est B ref C est C ref D est D ref E est E ref

Energy DCT8x8

0

0,2

0,4

0,6

0,8

1

1,2

1,4

u
J

RF 0,221 0,252 0,35 0,36 0,44 0,51 0,431 0,488 0,581 0,488

FU 0,9749 0,689 0,44 0,41 0,27 0,24 0,439 0,391 0,408 0,479

A2 est A2 ref B2 est B2 ref C est C ref D est D ref E est E ref

Energy Viterbi

0

10

20

30

40

50

60

70

80

90

100

u
J

RF 18,854 18,186 29,79 26,82

FU 68,698 51,115 25,11 23,28

A1 est A1 ref B1 est B1 ref

Energy dct32

0

0,005

0,01

0,015

0,02

0,025

u
J

RF 0,0054 0,0039 0,00523 0,00514

FU 0,0138 0,0102 0,00994 0,00902

A3 est A3 ref B3 est B3 ref

a)

b)

c)

d)

Figure 11. Area and energy of FU and RF.

scribing the number of functional units. In the RF field, the left side describes the

number of RF unit’s and right side the total number of register slots. The IC field of ta-

ble describes how many busses are in processor and the connection level of busses, Full

equals busses are fully connected, the med parameter equals the bus connections are

slightly optimized and the small describes fully optimized bus connections. The cycle

field describes how many clock cycles the execution of application takes. As the Table 8

shows the total number of architectures is five and two of them are done with three and

one with two different connectivity level to test the IC estimation, and two of them done

by three different applications. The total number of test cases is 14. Configurations are

referred by their names.

The Fig. 11 (a) shows area and the Fig. 11 (b), (c), and (d) energy of the functional units

and register files, which are quite same between the estimator results and the reference.

On cases C, D, and E only one connectivity level of interconnection is used to present

the estimation of FU and RF. The connectivity level does not have significant effect at

FU. If a unit has not registered outputs then the connectivity level has effect on the costs

of unit, because the unit is part of delay chain. The connection level of interconnection

network has slight effect on RF, but it is not meaningful. The changes in RF are due

to poor execution of the bypassing, which increases the costs when interconnection is

5. Implementation Experiments 48

Ic Area

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

E
q

 g
a

te
s

Buffers 171 0 106 0 397 0 314 0 609 0 372 0

bus 1389 1520 714 464 526 456 505 480 1480 1416 1029 1024

output socket 2870 2882 1234 1337 578 613 660 700 2252 2288 1537 1594

input socket 4536 3153 1215 1189 638 627 612 600 4711 4597 1248 1247

A ref A est C1 ref C1 est C2 ref C2 est C3 ref C3 est D2 ref D2 est D3 ref D3 est

Ic Area

0

5000

10000

15000

20000

25000

30000

35000

40000

E
q

 g
a
te

s

Buffers 1091 0 378 0 777 0 602 0

bus 2598 2448 4358 5352 5393 5280 4248 4320

output socket 3617 3391 7818 8505 8073 8246 6774 6617

input socket 7817 7576 16320 16072 21854 20370 18608 16818

D1 ref D1 est B ref B est E1 ref E1 est E2 ref E2 est

Figure 12. Area of Interconnection network.

Ic Energy

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

u
J

Buffers 0,18 0 0,23 0 0,05 0 0,04 0 0,47 0 0,11 0 0,01 0

bus 0,35 0,356 0,159 0,155 0,185 0,147 0,195 0,163 0,126 0,232 0,292 0,162 0,124 0,077

output socket 0,14 0,07 0,074 0,011 0,038 0,012 0,045 0,012 0,049 0,055 0,044 0,018 0,037 0,013

input socket 0,669 0,566 0,22 0,21 0,14 0,18 0,12 0,16 0,39 0,36 0,235 0,204 0,093 0,09

A2

ref

A2

est

C1

ref

C1

est

C2

ref

C2

est

C3

ref

C3

est

D1

ref

D1

est

D2

ref

D2

est

D3

ref

D3

est

Ic Energy

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

u
J

Buffers 0,4 0 0,46 0 0,48 0

bus 0,28 0,339 0,259 0,247 0,163 0,19

output socket 0,074 0,093 0,081 0,152 0,084 0,0061

input socket 0,748 0,478 0,677 0,673 0,664 0,563

B2 ref B2 est E1 ref E1 est E2 ref E2 est

Ic energy viterbi

0

20

40

60

80

100

120

140

u
J

Buffers 11,74 0 26,7 0

bus 30,282 27,832 19,263 26,804

output socket 10,93 5,374 4,913 6,538

input socket 68,082 60,405 49,478 44,98

A1 ref A1 est B1 ref B1 est

Ic energy dct32

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

u
J

Buffers 0,004 0 0,009 0

bus 0,005 0,005 0,006 0,007

output socket 0,002 0,001 0,002 0,002

input socket 0,008 0,006 0,016 0,009

A3 ref A3 est B3 ref B3 est

a)

b) c)

Figure 13. Energy of interconnection network.

not optimized. The references were made by synthesising processors and driving gate

level simulation of current application to get the switching activity of components. In

test cases A, C, and D the clock frequency was 200MHz and in others cases the clock

frequency was 100MHz.

Reducing the connectivity level of interconnection network reduces the capacitance of

bus and the processor might be able to run at higher clock speed, in cases where IC

was the limiting factor. Reducing connectivity always reduces costs, but when going

under critical limit, reduction increases the cycle count. Optimization of IC also lim-

5. Implementation Experiments 49

CNTRL Energy

0,00

2000,00

4000,00

6000,00

8000,00

10000,00

12000,00

u
W

CNTRL 10600,00 6470,00 6130,00 8080,00 1230 2760 4880 4770,00 5250 8950

E ref E est D ref D est C ref C est A ref A est B ref B est

CNTRL Area

0

2000

4000

6000

8000

10000

12000

E
q

 g
a
te

s

CNTRL 9482 11071 5487 3535 1783 2469,18 4173 4269 8639,25 8011,13

E ref E est D ref D est C ref C est A ref A est B ref B est

a) b)

Figure 14. Area and energy of control unit.

its the programmability of processor. The area of interconnection network is presented

in Fig. 12 and Fig. 13 presents the energy dissipation of the interconnection network.

The area estimation of interconnection network is better than the energy estimation and

the estimation of IC is more prone to errors than the estimation of FU or RF. The total

Estimation of IC is quite good. Inside the IC the component estimation might have a

big variation, but usually the error is not accumulated, the one component is larger and

another is smaller, due to the timing characteristics of the component. The main reason

for this is that the component is characterized separately to make the estimation proce-

dure easier. The timing of each component chains, the chain of output socket, bus and

input socket, has variation between the paths in the design. The variation average of

component timing is used in characterizing to model the component input and output

interface. When used technology is driven near to the limits, the accuracy of the esti-

mation of interconnection network energy dissipation is poorer, due to the extra buffers,

which are not included in the components. Extra buffers are added when more driving

capability is needed for satisfying the design parameters for clock cycle.

The control part were estimated by cases, which the interconnection were fully con-

nected presented in Fig. 14 (a), the area, and Fig. 14 (b), the energy. The result shows

that the control part estimation has large variation, which was predicted, because the

simplicity of control unit characterization.

6. CONCLUSIONS

The objective of this thesis was to evaluate the correctness of estimation procedure of

MOVE framework. During the evaluation the technology characterization were made

corresponding to demands of the estimation procedure. Technology characterization

consist four component classes functional units, register files, interconnection network,

and control unit. For each class own set of parameters were selected to ensure the selec-

tion of right component for each case. Beside the technology characterization the cost

database generator were implemented corresponding to the demands of the characteri-

zation procedure.

A set of processor configurations for three DSP benchmark applications, 32-point DCT,

8x8 DCT and viterbi decoding, were obtained by design space explorer of the MOVE

framework. To obtain the accuracy of Estimation procedure, these processor configura-

tions were synthesized to modern 0.13 µm standard cell technology. The obtained net

lists were analyzed to gain information on the costs, silicon area and energy dissipation

of the processor designs.

The results acquired described the estimation procedure is accurate enough, but there

are still things to improve. The final validation should be done by performing stan-

dard cell placement and initial routing on the net list level processor to acquire more

accurate information on wiring capacitances. The most error prone is the interconnec-

tion network, especially for energy estimation. For the interconnection network the

biggest problem of the estimation lies on the need of extra buffers when the technology

is drove near to the limits of used technology. Other source of error is the estimation

of the control logic. A more accurate cost model for the control block is required. Di-

viding control into parametrisable sub-blocks such as immediate registers, instruction

decompressor/decoder, and program counter, should result in a more reliable character-

ization. Modelling energy consumption would still be difficult, since virtually all the

activity occurring in the control path (such as, for example, instruction decoding) is to-

tally dependent on the input data (in the case of instruction decoding, the contents of the

instruction word).

REFERENCES

[1] H. Corporaal, Microprocessor Architectures: From VLIW to TTA. Chichester, UK:

John Wiley & Sons, 1997.

[2] Modelsim User Manual, Mentor, 2003.

[3] Synopsys Online Documentation, Synopsys, 2004.

[4] T. Pitkänen, T. Rantanen, A. Cilio, and J. Takala, “Hardware cost estimation for

application-specific prosessor design,” in Proc: Embedded Computer Systems: Ar-

chitectures, Modelling, and Simulation, Samos, Greece, July 2005.

[5] J.Rabaey and M. Pedram, Low Power Design Methologies. Norwell: Kluver Aca-

demic Publishers, 1996.

[6] E. G. Friedman, “Clock distribution design in VLSI circuits -an overview,” in IS-

CAS, 1993, pp. 1475–1478.

[7] R. Hossain, L. D. Wronski, and A. Albicki, “Low power design usign double edge

triggered flip-flops,” in IEEE Transactions on VLSI Systems, 1994, vol.2, pp. II–

261–II–265.

[8] J. Oh and M. Pedram, “Gated clock routing for low-power microprocessor design,”

in T-CADICS, 2001, vol.20, pp. NO.6–715–NO.6–722.

[9] G. Palumbo, F. Pappalardo, and S. Sannella, “Evaluation on power reduction apply-

ing gated clock approaches,” in ISCAS, 2002, vol.4, pp. IV–85–IV–88.

Appendix A

EXAMPLE OF INPUT SOCKET AND OUTPUT

SOCKET

-- Input socket with 3 inputs and 2 outputs

-- Socket is valid for all bus types

5

library IEEE;

use IEEE.Std_Logic_1164 .all;

use IEEE.Std_Logic_arith .all;

10 entity input_socket_cons_10_2 is

generic (

buswidth0 : integer := 32;

buswidth1 : integer := 24;

databus0_width : integer := 32;

15 databus1_width : integer := 32;

databus2_width : integer := 32;

port (

databus0 : in std_logic_vector (databus0_width -1 downto 0);

databus1 : in std_logic_vector (databus1_width -1 downto 0);

20 databus2 : in std_logic_vector (databus2_width -1 downto 0);

data0 : out std_logic_vector (buswidth0 -1 downto 0);

data1 : out std_logic_vector (buswidth1 -1 downto 0);

cntrl : in std_logic_vector (1 downto 0));

end input_socket_cons_10_2 ;

25

architecture input_socket of input_socket_cons_10_2 is

begin

sel : process (cntrl , databus0 , databus1 , databus2)

begin -- process sel

30 case cntrl is

when "00" =>

if databus0_width < buswidth0 then

data0 <= ext (databus0 ,data0’length);

else

35 data0 <= databus0 (buswidth0 -1 downto 0);

end if;

if databus0_width < buswidth1 then

data1 <= ext (databus0 ,data0’length);

else

40 data1 <= databus0 (buswidth1 -1 downto 0);

end if;

when "01" =>

if databus1_width < buswidth0 then

data0 <= ext (databus1 ,data0’length);

45 else

data0 <= databus1 (buswidth0 -1 downto 0);

end if;

if databus1_width < buswidth1 then

data1 <= ext (databus1 ,data0’length);

53

50 else

data1 <= databus1 (buswidth1 -1 downto 0);

end if;

when others =>

if databus2_width < buswidth0 then

55 data0 <= ext (databus2 ,data0’length);

else

data0 <= databus2 (buswidth0 -1 downto 0);

end if;

if databus2_width < buswidth1 then

60 data1 <= ext (databus2 ,data0’length);

else

data1 <= databus2 (buswidth1 -1 downto 0);

end if;

end case;

65 end process sel ;

end input_socket ;

-- Output socket with 1 input and 3 output

-- socket is for AND -OR bus

5

library IEEE;

use IEEE.Std_Logic_1164 .all;

use IEEE.Std_Logic_arith .all;

10 entity output_socket_andor_busses_2 is

generic (

buswidth0 : integer := 32;

buswidth1 : integer := 32;

buswidth2 : integer := 32;

15 datawidth :integer := 32);

port (

databus0_alt : out std_logic_vector (buswidth0 -1 downto 0);

databus1_alt : out std_logic_vector (buswidth1 -1 downto 0);

databus2_alt : out std_logic_vector (buswidth1 -1 downto 0);

20 data : in std_logic_vector (datawidth -1 downto 0);

cntrl : in std_logic_vector (2 downto 0));

end output_socket_andor_busses_2 ;

architecture output_socket_andor of output_socket_andor_busses_2 is

25 begin --

databus0_alt <= ext (data and sxt(cntrl (0 downto 0), data’length), databus0_alt ’length);

databus1_alt <= ext (data and sxt(cntrl (1 downto 1), data’length), databus1_alt ’length);

databus2_alt <= ext (data and sxt(cntrl (2 downto 2), data’length), databus2_alt ’length);

end output_socket_andor ;

Appendix B

FUNCTIONAL UNIT CONFIGURATION

FU configuration file for MOVEgen

for processor designs with 1 load-store unit

Teemu äPitknen TUT /IDCS

teemu.pitkanen@tut .fi

5

[fu] fu5

[socket_dataw]

only addresses are transported through operand sockets

{ fu5_o 9 }

10 [port_map] {

data_in dmem_q

data_out dmem_d

addr dmem_addr

mem_en_x dmem_en_x

15 wr_en_x dmem_wr_x

wr_mask_x dmem_bit_wr_x

}

[end_fu]

20 [fu] fu15

[socket_dataw]

{ fu15_t 5 }

[end_fu]

25 # functional unit performing operations cntlrd and cntlwr

[fu] io1

[port_map] {

wr cntl_wr

data_in cntl_data_in

30 data_out cntl_data_out

}

[attributes] { lockrq cntrlreg }

[end_fu]

35 [cntrl]

[port_map] {

mem_data imem_data

mem_addr imem_address

mem_en_x imem_en_x }

40 [end_cntrl]

Appendix C

EXTERNAL INTERFACE

-- data memory interface

dmem_q : in std_logic_vector (DMEMDATAWIDTH -1 downto 0);

dmem_d : out std_logic_vector (DMEMDATAWIDTH -1 downto 0);

dmem_addr : out std_logic_vector (DMEMADDRWIDTH -1 downto 0);

5 dmem_en_x : out std_logic ;

dmem_wr_x : out std_logic ;

dmem_bit_wr_x : out std_logic_vector (DMEMDATAWIDTH -1 downto 0);

-- instruction memory interface

10 imem_data : in std_logic_vector (INSTWIDTH -1 downto 0);

imem_address : out std_logic_vector (IMEMADDRWIDTH -1 downto 0);

imem_en_x : out std_logic ;

cntl_data_in : in std_logic_vector (CNRTLDATAWIDTH -1 downto 0);

15 cntl_data_out : out std_logic_vector (CNTRLDATAWIDTH -1 downto 0);

cntl_wr : in std_logic ;

Appendix D

COST DATABASE

FU

oper add_sub

data 32

5 pipeline SVTL,0

latency 2

input 2

output 1

area 835.750000

10 delay 8.09

energy add 10.987 pJ

energy sub 11.2 pJ

energy (idle) 28.791 fJ

energy (static) 0.809 aJ

15

oper add

data 32

pipeline none,0

latency 1

20 input 2

output 1

area 862.250000

delay 8.09

energy add 10.885 pJ

25 energy (idle) 383.673 fJ

energy (static) 0.821 aJ

RF

30 size 2

rd 1

wr 1

data 32

area 867.000000

35 delay 1,4.2,0

energy 0wr_1rd 2.132821 pJ

energy 1wr_0rd 6.064 pJ

energy 1wr_1rd 9.9105 pJ

energy (idle) 417.8305 fJ

40 energy (static) 0.532 aJ

size 4

rd 2

wr 2

45 data 32

area 2853.000000

delay 1.1,4.25,0

energy 0wr_1rd 3.306661 pJ

energy 0wr_2rd 6.137 pJ

50 energy 1wr_0rd 12.8075 pJ

energy 1wr_1rd 19.6135 pJ

energy 1wr_2rd 27.2705 pJ

57

energy 2wr_0rd 21.96 pJ

energy 2wr_1rd 29.353 pJ

55 energy 2wr_2rd 39.0395 pJ

energy (idle) 883.0565 fJ

energy (static) 2.05 aJ

Bus

60

fanin 8

fanout 20

data 13

area 52.000000

65 delay 3.2,0.97

energy 404.725 fJ 0.0 fJ

fanin 8

fanout 25

70 data 13

area 52.000000

delay 3.2,1.11

energy 550.63 fJ 0.0 fJ

75 fanin 8

fanout 30

data 13

area 52.000000

delay 3.2,1.25

80 energy 681.935 fJ 0.0 fJ

Input Socket

fanin 12

85 fanout 2

data 15

area 360.000000

delay 1.1,1.23

energy 724.271 fJ 477.088 fJ

90

fanin 12

fanout 2

data 32

area 772.500000

95 delay 2.0,1.23

energy 2.243397 pJ 1.014396 pJ

Output Socket

100 fanin 1

fanout 6

data 8

area 60.000000

delay 0.4,0.45

105 energy 64.332 fJ 0.0 uJ

fanin 1

fanout 6

data 32

110 clk 10

area 240.000000

delay 0.8,0.98

energy 277.008 fJ 0.0 uJ

115 fanin 1

fanout 7

data 1

clk 10

area 8.750000

120 delay 0.3,0.43

energy 6.455708 fJ 0.0 uJ

Appendix E

COMPILATION SCRIPTS FOR MODELSIM

#!/ bin /bash -- debug

###

shell script to compile movecore generated with MOVEgen

for ModelSim simulator

5 #

Teemu äPitknen

<teemu.pitkanen@tut .fi>

TUT /IDCS

###

10

Check that MOVEgen is set up

if [-z $MOVEGEN_HOMEDIR]; then

printf "Error : MOVEgen environment is not set \n"

exit 1

15 fi

Check that ModelSim is set up

if [-z $MODEL_TECH]; then

printf "Error : ModelSim environment is not set \n"

exit 1

20 fi

if [! -f modelsim .ini]; then

printf "Error : Cannot find modelsim .ini\n"

exit 1

fi

25 if [! -f globals_pkg .vhdl]; then

printf "Error : Cannot find globals_pkg .vhdl\n"

exit 1

fi

if [! -f interconn .vhdl]; then

30 printf "Error : Cannot find interconn .vhdl\n"

exit 1

fi

if [! -f control .vhdl]; then

printf "Error : Cannot find control .vhdl\n"

35 exit 1

fi

if [! -f movecore .vhdl]; then

printf "Error : Cannot find movecore .vhdl\n"

exit 1

40 fi

if [! -d work] ; then

vlib work

fi

45

vcom -93 globals_pkg .vhdl

vcom -93 $MOVEGEN_HOMEDIR /vhdl_src /top_level /opcodes_pkg .vhdl

vcom -93 interconn .vhdl

vcom -93 control .vhdl

50 vcom -93 movecore .vhdl

printf "Done.\n"

#!/ bin /bash -- debug

59

###

shell script to compile movecore generated with MOVEgen

for ModelSim simulator

5 #

Teemu äPitknen

<teemu.pitkanen@tut .fi>

TUT /IDCS

###

10

Check that MOVEgen is set up

if [-z $MOVEGEN_HOMEDIR]; then

printf "Error : MOVEgen environment is not set \n"

exit 1

15 fi

Check that ModelSim is set up

if [-z $MODEL_TECH]; then

printf "Error : ModelSim environment is not set \n"

exit 1

20 fi

if [! -f modelsim .ini]; then

printf "Error : Cannot find modelsim .ini\n"

exit 1

fi

25 if [! -f globals_pkg .vhdl]; then

printf "Error : Cannot find globals_pkg .vhdl\n"

exit 1

fi

if [! -f interconn .vhdl]; then

30 printf "Error : Cannot find interconn .vhdl\n"

exit 1

fi

if [! -f control .vhdl]; then

printf "Error : Cannot find control .vhdl\n"

35 exit 1

fi

if [! -f movecore .vhdl]; then

printf "Error : Cannot find movecore .vhdl\n"

exit 1

40 fi

if [! -d work] ; then

vlib work

fi

45

vcom -93 $MOVEGEN_HOMEDIR /vhdl_src /top_level /mem_arbiter .vhdl

vcom -93 lut_init_pkg .vhdl

vcom -93 $MOVEGEN_HOMEDIR /vhdl_src /mem /synch_rom .vhdl

vcom -93 $MOVEGEN_HOMEDIR /vhdl_src /mem /synch_dualport_sram .vhdl

50 vcom -93 $MOVEGEN_HOMEDIR /vhdl_src /mem /synch_sram .vhdl

vcom -93 $MOVEGEN_HOMEDIR /vhdl_src /top_level /moveproc_ent .vhdl

vcom -93 $MOVEGEN_HOMEDIR /vhdl_src /top_level /moveproc_arch .vhdl

vcom -93 $MOVEGEN_HOMEDIR /vhdl_src /test/clkgen .vhdl

vcom -93 $MOVEGEN_HOMEDIR /vhdl_src /test/testbench .vhdl

55 vcom -93 testbench_cfg .vhdl

printf "Done.\n"

