
TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Electrical Engineering

RISTO MÄKINEN

FAST FOURIER TRANSFORM ON TRANSPORT TRIGGERED
ARCHITECTURES

Master of Science Thesis

Subject approved by Department Council
17th Aug, 2005

Examiners: Prof. Jarmo Takala
M.Sc. Jari Heikkinen

PREFACE

This M.Sc. thesis was completed in Institute of Digital and Computer Systems of Tam-
pere University of Technology (TUT) as a part of the Flexible Design Methods for
DSP Systems (FlexDSP) project funded by the National Technology Agency.

I would like to express my sincere gratitude to my thesis supervisor, Professor Jarmo
Takala, for giving me a chance to develop as a designer and for his patience as I have
made myself thoroughly familiar with the transport triggered architecture concept. I
want also thank him for guiding me to a fascinating area of research and for giving
me the thread for my thesis. I am also extremely grateful to M.Sc. Jari Heikkinen for
his help in the inspecting process and for his patience to answer numerous questions
I have posed. Special thanks to M.Sc. Teemu Pitkänen for always having time to help
with the hardware issues related to my work. I would also like to thank my colleagues
for the inspired and motivated work atmosphere they have provided.

I am also grateful to my friends for giving me momentous, relaxing hours outside
working days. Finally, I would like to thank my family, especially my deceased father,
for their support throughout my studies.

Tampere, October 11, 2005

Risto Mäkinen

TABLE OF CONTENTS

Abstract . 5

Tiivistelmä . 6

List of Abbreviations and Symbols . 9

1. Introduction . 11

2. MOVE Framework . 13

2.1 Transport Triggered Architectures 13

2.1.1 From VLIW to TTA . 13

2.1.2 Hardware Aspects . 15

2.1.3 Software Aspects . 17

2.2 MOVE Tools . 18

2.2.1 Software Subsystem . 19

2.2.2 Hardware Subsystem . 20

2.2.3 Design Space Explorer . 21

2.3 TTA Assembler . 23

2.3.1 TTA Assembly Language 23

2.3.2 Usage and Simulation . 24

3. Fast Fourier Transform . 26

3.1 Definitions . 26

3.2 FFT Algorithms . 27

3.2.1 Cooley and Tukey . 27

3.2.2 Radix-2 . 28

Table of Contents 3

3.2.3 Radix-4 . 31

3.3 Index Generation . 33

3.3.1 Input Permutation . 34

3.3.2 Operand Access . 35

4. HLL Implementations . 38

4.1 Common Features . 39

4.2 Case 1: ANSI-C Code . 39

4.3 Case 2: SFUs for Complex Arithmetic 41

4.3.1 Complex Multiplier . 41

4.3.2 Complex Adder . 42

4.4 Case 3: SFU for Index Generation 44

4.4.1 Index Generator . 44

4.4.2 Source Code . 46

4.5 Explorations . 46

4.5.1 Resource Optimization . 47

4.5.2 Connectivity Optimization 47

5. Optimized Assembler Implementation . 49

5.1 Operation Scheduling . 49

5.1.1 Operations . 50

5.1.2 Scheduling Principle . 50

5.1.3 Identification of Iteration Kernel 53

5.2 Assembly Coding Process . 54

5.2.1 Resources . 54

5.2.2 Code . 58

5.2.3 Connectivity Optimization 62

5.3 Hardware Implementation . 63

5.3.1 Memories . 63

Table of Contents 4

5.3.2 Core . 65

5.3.3 HDL Simulation and Synthesis 67

6. Performance Analysis . 68

6.1 Proposed FFT Processor . 68

6.1.1 Computation Speed . 68

6.1.2 Chip Area and Power Consumption 69

6.2 Performance Comparison . 72

7. Conclusions . 75

Bibliography . 77

Appendix A Source Code of Case1

Appendix B Source Code of Case2

Appendix C Source Code of Case3

Appendix D Operation Scheduling of Radix-4 DIT Butterfly

Appendix E Operation Scheduling for Discovering the Kernel

Appendix F TTA Assembly Code

Appendix G Architecture Description File of Processor

Appendix H Core: Function Units

Appendix I Core: Register Files

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Degree Program of Electrical Engineering
Institute of Digital and Computer Systems
Mäkinen, Risto Mikael: Fast Fourier Transform on Transport Triggered Architec-
tures
Master of Science Thesis: 74 pages, 24 appendix pages
Examiners: Prof. Jarmo Takala and M.Sc. Jari Heikkinen
Funding: The National Technology Agency
Department of Electrical Engineering
October 2005
Keywords: transport triggered architecture, fast Fourier transform, performance opti-
misation

Application-specific instruction set processors are an interesting choice as processors
are being selected for the needs of digital signal processing applications. These pro-
cessors are programmable and their hardware can be tailored for the needs of the ap-
plication to obtain both high performance and good area efficiency. However, these
processors are hard to design since there can exist even hundreds of good processor
configurations for a certain application in addition to which these processors have to
be reprogrammed when the architecture is modified. Thus, effective design tools are
needed to ease the design process of these processors. A semi-automated design envi-
ronment, MOVE framework, was developed for designing application specific instruc-
tion set processors. Processors designed with the MOVE framework utilize the trans-
port triggered architecture (TTA) paradigm where the program specifies only the data
transports to be performed by the interconnection network. Actual operations occur as
a side effect of these explicitly defined data transports.
In this thesis, fast Fourier transform (FFT) was implemented on TTA to evaluate
TTA’s performance in performing FFT. First, FFT was implemented using high-level
language (HLL) code and the HLL compiler of the MOVE framework. Due to un-
favourable performances of HLL implementations, FFT was implemented using as-
sembly code in the next implementing phase. Based on the optimized assembler im-
plementation, an effective TTA processor for performing FFT is proposed and com-
pared with several other commercial and academic FFT processors to evaluate TTA’s
performance against other FFT processors.
TTA’s performance in performing FFT was noticed to be extremely good when as-
sembly code was used in programming. Even better performance indices than in the
known, good application-specific integrated circuit implementations for FFT was ob-
tained. As a conclusion, based on the results obtained in this thesis work, it can be
stated that TTA is a promising programmable architecture candidate for implementing
DSP applications.

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Sähkötekniikan koulutusohjelma
Digitaali- ja tietokonetekniikan laitos
Mäkinen, Risto Mikael: Fast Fourier Transform on Transport Triggered Architec-
tures
Diplomityö: 74 sivua, 24 liitesivua
Tarkastajat: Prof. Jarmo Takala ja DI Jari Heikkinen
Rahoitus: Teknologian kehittämiskeskus (TEKES)
Sähkötekniikan osasto
Lokakuu 2005
Avainsanat: transport triggered architecture, nopea Fourier-muunnos,
suorituskyvyn optimointi

Sovelluskohtainen käskykantaprosessori (Application Specific Instruction set Proces-
sor, ASIP) on mielenkiintoinen vaihtoehto, kun ollaan valitsemassa prosessoria digi-
taalisen signaalinkäsittelyn sovellusten tarpeisiin. ASIP-prosessorit ovat ohjelmoitavia
ja niiden laitteistoresurssit voidaan räätälöidä vastaamaan sovelluksen tarpeita korkean
suorituskyvyn ja tehokkaan pinta-alan käytön aikaansaamiseksi. ASIP-prosessorien
suunnitteleminen on kuitenkin vaikeaa, koska tietylle sovellukselle voi olla olemas-
sa jopa satoja hyviä prosessorikonfiguraatioita. Prosessori täytyy lisäksi ohjelmoida
aina uudelleen, kun sen arkkitehtuuria on muutettu. Edellisten syiden takia tarvitaankin
tehokkaita suunnittelutyökaluja helpottamaan ASIP-prosessorien suunnittelua.

MOVE-ympäristö on puoliautomatisoitu ohjelmisto ASIP-prosessoreiden suunnit-
telemista varten. MOVE-ympäristö koostuu kolmesta osasta. Suunnitteluavaruuden
kartoitus-työkalu etsii annetulle sovellukselle optimaalisen prosessoriarkkitehtuurin.
Ohjelmistotyökaluilla käännetään korkean tason ohjelmointikielellä toteutettuja sovel-
luksia suoritettaviksi binääriohjelmiksi käyttäen käskytason rinnakkaisuutta hyväk-
si. Laitteistotyökaluilla generoidaan puolestaan prosessorin kuvaus varsinaista piito-
teutusta varten. MOVE-ympäristössä suunnitellut prosessorit käyttävät siirtoliipaisu-
periaatetta (transport triggering), jossa ohjelma määrittelee ainoastaan datan siir-
rot laskentayksiköiden ja rekisterien välillä. Varsinaiset operaatiot tapahtuvat näiden
datan siirtojen liipaisemina, eli päinvastaisesti kuin perinteisissä ohjelmointimalleissa.
Tällä periaatteella toimivista prosessoriarkkitehtuureista käytetään nimitystä siirtolii-
paisuarkkitehtuuri (Transport Triggered Architecture, TTA).

Datan siirrot suoritetaan TTA-prosessorissa ns. kytkentäverkon kautta, joka koostuu
väylistä ja laskentayksiköiden sekä väylien väliin kytketyistä ns. soketeista. Sokettien
tehtävä on siis siirtää dataa laskentayksiköstä/rekisteristä väylälle tai väylältä lasken-

Tiivistelmä 7

tayksikköön/rekisteriin. TTA-prosessorin kytkentäverkon kytkentöjen määrä voidaan
optimoida tiettyä sovellusta varten, mikä vähentää prosessorin valmistuskustannuksia
huomattavasti.

Nopea Fourier-muunnos (fast Fourier transform, FFT) on eräs keskeinen digi-
taalisessa signaalinkäsittelyssä käytettävä muunnos. Se perustuu diskreettiin Fourier-
muunnokseen, eli FFT-muunnoksella tarkoitetaan diskreetin Fourier-muunnoksen
laskentaan kehitettyjä nopeita algoritmeja. FFT-muunnosta tarvitaan mm. tietoliiken-
nesovelluksissa sekä digitaalisessa puheen- ja kuvankäsittelyssä. FFT-muunnos on
erillisistä laskentatasoista koostuva kompleksinen muunnos. Nämä laskentatasot muo-
dostuvat pienikokoisista diskreeteistä Fourier-muunnoksista, joiden laskenta voidaan
tehdä suorittamalla yksinkertaisia kompleksisia kertolaskuja sekä summauksia. Täl-
laista pienikokoista diskreettiä Fourier-muunnosta, joka toimii FFT-muunnoksen
perusrakenne-elementtinä, kutsutaan perhoseksi. FFT-muunnoksen laskentaan liittyy
keskeisesti myös ns. indeksin generointi, jonka avulla määritetään perhosten operandi-
en muistiosoitteet muunnosta suoritettaessa.

Tässä diplomityössä toteutettiin FFT-muunnos TTA-prosessoria käyttäen, jotta voi-
tiin arvioida TTA-arkkitehtuurin suorituskyky nopean Fourier-muunnoksen laskennas-
sa. FFT-muunnos toteutettiin aluksi käyttäen korkean tason ohjelmointikieltä ja kään-
täjää. Korkean tason ohjelmointikielellä tehtiin yhteensä kolme toteutusta, joista kukin
toteutti 1024-pisteisen muunnoksen. Aluksi sovellus kirjoitettiin käyttäen ainoastaan
korkean tason kielen perusoperaatioita ja -tietotyyppejä. Tämän jälkeen sekä sovelluk-
sen koodiin että prosessorin arkkitehtuuriin alettiin tehdä inkrementaalisia parannuk-
sia paremman suorituskyvyn aikaansaamiseksi. Toisessa toteutuksessa arkkitehtuuriin
lisättiin kompleksinen kertoja ja summain suorittamaan kompleksilukuaritmetiikkaa.
Kolmannessa toteutuksessa arkkitehtuuriin lisättiin vielä osoitegeneraattori-yksikkö
nopeuttamaan perhosten operandien laskennassa tarvittavaa muistiosoitearitmetiikkaa.
Lisäksi ylimääräiset kertolaskut poistettiin koodista ja koodin sisemmän silmukan
rakennetta optimoitiin hieman. Kukin tehty muutos paransi FFT-muunnoksen lasken-
nan suorituskykyä. Varsinkin osoitegeneraattorin käyttö paransi suorituskykyä huo-
mattavasti.

Viimeisen korkean tason kielellä tehdyn toteutuksen suorituskyky ei kuitenkaan ol-
lut riittävän hyvä. Tämän takia 1024-pisteinen FFT-muunnos toteutettiin seuraavas-
sa toteutusvaiheessa assembly-koodia käyttäen. Aluksi määritettiin, miten yksittäinen
perhonen vuoronnetaan tehokkaasti. Sitten voitiin helposti määrittää, miten muun-
noksessa tarvittava useiden peräkkäisten perhosten laskennan vuoronnus piti tehdä.
Muunnoksen operaatioiden vuoronnuksen jälkeen määritettiin optimaalinen arkki-
tehtuuri FFT-muunnoksen laskentaa varten sekä kirjoitettiin assembly-kielinen ku-
vaus 1024-pisteiselle muunnokselle. Prosessorin kytkentäverkon kytkentöjen määrä
kyettiin optimoimaan erittäin alhaiselle tasolle assembly-kielisen toteutuksen avulla,
mikä vähensi prosessorin valmistuskustannuksia huomattavasti. Lopuksi generoitiin
prosessorin laitteistonkuvauskielinen toteutus MOVE-ympäristön laitteistotyökaluja
käyttäen, minkä jälkeen prosessori simuloitiin ja syntesoitiin. Tähän optimoituun
assembler-toteutukseen pohjautuen työssä esitellään FFT-muunnoksen laskentaan op-
timoitu tehokas TTA-prosessori, jota verrataan myös muihin kirjallisuudessa raportoi-
tuihin FFT-prosessoreihin.

Tiivistelmä 8

TTA-arkkitehtuurin suorituskyvyn huomattiin olevan erittäin hyvä FFT-muunnoksen
laskennassa, kun ohjelmoinnissa käytettiin assembly-koodia. TTA-arkkitehtuurilla
päästiin jopa parempiin suorituskykyindekseihin kuin hyvillä, FFT-muunnoksen
laskentaan kehitetyillä sovelluskohtaisilla integroiduilla piireillä. Korkean tason kielel-
lä tehtyjen toteutusten suorituskyvyt olivat huomattavasti huonompia kuin assembler-
toteutuksen suorituskyky, joka oli odotettu tulos. Yhteenvetona voidaankin todeta, että
tässä diplomityössä saavutettujen tulosten perusteella TTA on lupaava ohjelmoitava
arkkitehtuurikandidaatti digitaalisen signaalinkäsittelyn sovellusten toteuttamiseen.

LIST OF ABBREVIATIONS AND SYMBOLS

α Constant reflecting the importance of area

β Constant reflecting the importance of execution time

ADF Architecture Description File

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction set Processor

BEM Binary Encoding Map

CMOS Complementary Metal Oxide Semiconductor

DFT Discrete Fourier Transform

DIT Decimation-In-Time

DSP Digital Signal Processor or Digital Signal Processing

DP-DMEM Dual-Port Data Memory

FIFO First In First Out

FFT Fast Fourier Transform

FFTTA FFT-on-TTA

FU Function Unit

GCC GNU Compiler Collection

GNU Gnu’s Not Unix

GPP General Purpose Processor

GPR General Purpose Register

List of Abbreviations and Symbols 10

HDL Hardware Description Language

HLL High-Level Language

HW Hardware

IC Interconnection Network

IDU Instruction Decode Unit

IFU Instruction Fetch Unit

ILP Instruction-Level Parallelism

IMEM Instruction Memory

LSU Load-Store Unit

OTA Operation Triggered Architecture

PC Program Counter

RF Register File

RTL Register-Transfer-Level

SFU Special Function Unit

SP-DMEM Single-Port Data Memory

SW Software

TTA Transport Triggered Architecture

VHDL Very high speed integrated circuit Hardware Description Language

VLIW Very Long Instruction Word

1. INTRODUCTION

The current trend in digital signal processing (DSP) application domain is to move to-
wards high-level language (HLL) programming and customizable architectures. The
reason behind this development is the increasing complexity of DSP applications. De-
signers are not able to produce the products on the market in time without effective
design tools and design concepts. High performance requirements are also set for both
the applications and the architectures. In addition, implementation costs of a DSP-
system should be as minimal as possible to manufacture even millions of products eco-
nomically viable. Usually, companies are forced to make compromises between high
performance and low implementation costs to produce productive products. Low-level
optimisation techniques are still used for obtaining the cost-performance requirements
set to the products.

Application-specific instruction set processors (ASIP) can be designed to respond to
cost-performance requirements of DSP applications. ASIP is programmable and it
provides a customizable architecture for the requirements of the application. Unlike in
general purpose processors (GPP), custom hardware can be easily tailored for the re-
quirements of the application and added to the modular architecture for obtaining better
performance. The design process of an ASIP is demanding and, therefore, also time
consuming for designers since the ASIP has to be reprogrammed when the architecture
is modified. Furthermore, the design space is often very large meaning that there can
exist hundreds of good architecture configurations for a certain application. To ease
the design process of ASIPs, a tool set, MOVE Framework, was developed [1]. The
MOVE framework makes it possible to design ASIPs semi-automatically. Processors
designed with the MOVE framework exploit the transport triggered architecture (TTA)
concept proposed by Corporaal [2]. The MOVE framework is composed of three main
components: design space explorer, hardware subsystem, and software subsystem. The
design space explorer searches the design space and tries to find a good architecture
configuration for the given application. The hardware subsystem is responsible for
generating the layout of the processor. The purpose of the software subsystem is to
compile HLL applications to binary executables by exploiting instruction-level paral-

1. Introduction 12

lelism (ILP). Furthermore, the software subsystem contains an instruction set simulator
and also an assembler which has been ported into it to be able to program assembly
code for TTA processors.

Fast Fourier transform (FFT) is a fundamental operation in the DSP application do-
main. In this thesis, FFT is implemented on TTA to evaluate the performance of the
TTA in computing FFT. First, FFT is implemented using HLL code. This is done to
see how effectively the FFT application can be performed on TTA by using the HLL
compiler. In the next implementing phase, FFT is implemented by using the assem-
bler. The assembler implementation is done to see how effectively the FFT application
can be performed on TTA in general. The performance of the HLL compiler can be
also considered with the aid of the assembler implementation. Based on the assembler
implementation, an effective TTA processor is proposed in the end of this thesis for
computing the 1024-point radix-4 FFT. The proposed processor is also compared to
several other commercial and academic FFT processors.

The structure of this thesis is as follows. The TTA concept is described in Chapter 2
by introducing three topics: development from VLIW architecture to TTA, hardware
aspects, and software aspects of TTA. In addition, the MOVE framework is described
with its subcomponents. Finally, the TTA assembler and the TTA assembly language
are introduced. The needed FFT theory is represented in Chapter 3. First, the defini-
tion of the discrete Fourier transform (DFT), on which the FFT is based on, is given
together with a couple of other usefull definitions. Next, FFT algorithms are discussed
by getting of the ground from the principle of Cooley and Tukey. Based on the prin-
ciple of Cooley and Tukey, radix-2 and radix-4 FFT algorithms are discussed. The
definition of the algorithm realized on TTA is also given. Finally, the index generation
principle of this algorithm is described. HLL implementations are discussed in Chap-
ter 4. Three separate implementations, in which incremental improvements are done
to both the code and the architecture, are described. Finally, the results of the explo-
rations are shown. The optimized assembler implementation is described in Chapter 5
in detail. The used scheduling principle is discussed first. After that, the assembly pro-
gramming phase is described together with the assembly code. Finally, the hardware
implementation of the processor is discussed. The effective TTA processor for com-
puting the 1024-point radix-4 FFT is proposed in Chapter 6. The characteristics of the
proposed processor are listed first after which the processor is compared with several
other FFT processors to evaluate TTA’s performance against other FFT architectures.
This thesis is summarized in Chapter 7 by representing the conclusions.

2. MOVE FRAMEWORK

The current trend in designing embedded systems, especially for DSP domain, is to
move towards customizable processor architectures. This results from the fact the de-
sign process of an embedded system exploiting a customizable processor architecture
is faster and easier for designers than that of the design process exploiting application-
specific integrated circuits (ASICs). Due to scalability, flexibility and modularity of
customizable processor architectures, they can be easily scaled for different applica-
tions, unlike ASICs, and the design process of them can be automated. In this chapter,
a customizable processor architecture and an automated design environment for this
architecture are descriped. TTA is such an architecture and the MOVE framework
such a design environment that automates the design process of TTA processors.

TTA is described in Section 2.1. In Section 2.2, the MOVE framework is described
together with its main components. The TTA assembler for the assembly level TTA
coding is introduced in Section 2.3.

2.1 Transport Triggered Architectures

TTA is derived from the very long instruction word (VLIW) architecture, which is
one of the processor architectures exploiting instruction-level parallelism (ILP). The
development from VLIW to TTA is introduced in Section 2.1.1. The hardware (HW)
and software (SW) aspects of TTAs are discussed briefly in Sections 2.1.2 and 2.1.3.

2.1.1 From VLIW to TTA

The VLIW architecture is flexible and scalable, which makes it an interesting choise for
the designs of ASIPs. VLIWs are constructed from multiple, concurrently operating
function units (FUs) where each FU supports RISC style operations. The ILP can
also be seen from the instructions: each VLIW instruction specifies multiple RISC
operations. An example VLIW processor is illustrated in Fig. 1. [3]

2. MOVE Framework 14

Immediate

BP−1 BP−2

FU−1 FU−2

Operand
selectors

Register file

Bypass
buses

OP−1,1 OP−1,2 OP−2,1 OP−2,2

Figure 1. The organization of a VLIW processor with two FUs.

The VLIW processor contains a multi-ported register file (RF), that is shared by the
FUs, and a bypassing circuit for forwarding the results from the outputs of FUs to the
inputs of FUs. This bypassing circuit bypasses the register file and its purpose is to
maximize the utilization of FUs. As ILP is increased in VLIWs by adding more FUs,
the register file and the bypassing circuit must always be implemented for worst case
situations even though these kind of situations rarely emerge. That is, the implementa-
tion of RF for worst case situation in two-operand instructions would mean that each
FU must have three ports for accessing the RF to perform two reads and one write
simultaneously [4]. This increases the complexity of the RF. Also the complexity of
the bypassing circuit is increasing rapidly as the number of FUs is increased. This
rapidly increasing connectivity of VLIWs datapath makes it complex and restricts the
scalability of VLIW architecture [4].

Due to the limitations of VLIW architecture, TTA was proposed by Corporaal [3]. The
fundamental idea was to reduce the RF and bypass complexity. In TTAs, the com-
plexity of the RF is reduced by reducing the number of RF ports, and the number of
registers in the RF itself [3]. The complexity of the bypass network is reduced by
bringing the RFs into the same architectural level as FUs, which is illustrated in Fig. 2.
Furthermore, the traditional programming model, in which a program specifies oper-
ations to be executed and then a single operation triggers data transports, is mirrored
in TTAs. I.e., in TTAs, a program specifies data transports to be executed and then a
single data transport triggers operations [3].

2. MOVE Framework 15

FU−2

FU−3

D
at

a
m

em
or

y

Instruction
fetch
unit

decode
Instruction

unit

Central
processing
unit

In
str

uc
tio

n
m

em
or

y

In
te

rc
on

ne
ct

io
n

ne
tw

or
k FU−1

RF−1

RF−2

Figure 2. Organization of the TTA.

2.1.2 Hardware Aspects

A TTA processor consists of FUs, RFs, interconnection network (IC), control logic,
and separate instruction and data memories. The structure of a TTA processor is de-
picted in Fig. 3.

The IC is responsible for transferring data between the FUs and the RFs. It is composed
of data transport buses and sockets, which are connecting the FUs and the RFs to each
others. There exists two types of sockets: input and output sockets. An input socket is
responsible for feeding the data from a bus into an FU and an output socket places a
result of an FU on a correct bus. Input sockets can be implemented using multiplexers,
and output sockets, respectively, by using de-multiplexers. The connectivity of the IC,
i.e., the connections between buses and sockets, can be optimized for the application.
This makes the structure of the sockets simpler, i.e., they can be implemented by using
simpler multiplexers and de-multiplexers which reduces the required chip area. Also
the capacitive bus load is reduced indicating that faster data transport times can be
obtained [3].

FU

FU

CNTRLRF RF IMEM

FU LSUFU DMEM

Figure 3. TTA processor structure. FU: function unit. RF: register file. LSU: load-store unit.

CNTRL: control unit. DMEM: data memory. IMEM: instruction memory. Dots

represent connections between buses and sockets.

2. MOVE Framework 16

FUs are performing the actual computation. They are completely independent of each
other and of the interconnection network. FUs can, therefore, be designed separately,
and pipelined independently. They contain three types of registers: operand, trigger,
and result. Input data values of an FU are moved to its operand and trigger registers.
An FU can have more than one operand register. As data is moved to the trigger
register by a trigger move, the FU starts to perform an operation from its operation set.
The operation to be performed is selected by an opcode, that is decoded in the trigger
socket and transferred through it into the FU together with the trigger data. This is also
known as triggering of the FU.

RFs provide general-purpose registers (GPRs) for storing temporary values. They can
be partitioned and each partition can be accessed through its own input and output
sockets. The number of input and output sockets of a RF partition can be adjusted
according to the program’s needs. Each RF partition can also have a different number
of GPRs.

The control logic is implemented inside the control unit. The control unit is composed
of four operational units: an instruction fetch unit (IFU), an instruction decode unit
(IDU), an immediate unit, and a guard unit [5]. IFU fetches the instructions from
the instruction memory and feeds them to IDU, which decodes them and activates
the correct sockets to perform the data transports on the buses as requested by the
instruction. Due to the fact that one bus can perform one data transport in one clock
cycle, one TTA instruction specifies always as many data transports as there are data
transport buses in a target TTA processor. The instruction format of the TTA is depicted
in Fig. 4. A field in the instruction specifying a single data transport is called a move

slot. A move slot contains three fields: guard ID, destination ID, and source ID. The
destination ID specifies which input socket reads the data from a bus. The source ID
specifies an output socket that writes the data on a bus. The guard ID specifies whether
a data transport is performed on a bus or not. It can be used to implement conditional
statements. The reserved immediate field is used for specifying long immediates.

grd dst ID src ID src IDdst IDgrd reserved immediate field

move slot 0 move slot 1

Figure 4. TTA instruction format.

2. MOVE Framework 17

2.1.3 Software Aspects

As already mentioned in Section 2.1.1, the traditional programming paradigm of op-
eration triggered architectures (OTAs), in which a program specifies operations which
trigger data transports, is mirrored in TTAs. That is, a TTA program specifies the data
transports to be performed by the interconnection network. Therefore, only one type
of operation is supported: the move operation, which performs a data transport from
a source location to a destination location. The source location can be a register or an
output of an FU and the destination location a register or an input of an FU.

Programming an operation on a TTA processor consists of moving operands to the
input registers of an FU that is capable to perform the operation, and moving the result
from the output of the FU to another FU or an RF after the FU has performed the
operation [3]. The actual operation, e.g., addition, occurs as a side effect of the trigger
move, which moves the data to the trigger register of the FU.

Typically, one OTA operation corresponds to three move operations: operand, trigger,
and result moves. For example, a simple OTA addition:

add r3, r1, r2

which adds together values from register locations r1 and r2 and stores the result to
the register location r3, can be converted to the following three move operations in the
programming model of TTA:

r1 -> add_o

r2 -> add_t

add_r -> r3

The first move indicates the operand move to the operand register of an add-unit.
’add_o’ indicates the input (operand) socket through which the operand move is per-
formed. The second move indicates the trigger move and ’add_t’ the input (trigger)
socket, respectively. The third move indicates the result move to the register location
r3. ’add_r’ is the output (result) socket through which the result move is performed.

2. MOVE Framework 18

Figure 5. MOVE framework.

2.2 MOVE Tools

The MOVE Framework is a set of software tools for semi-automated design process of
application-specific instruction set processors (ASIPs) [1]. The semi-automation, pro-
vided by these tools, is essential in ASIP designs as the design space is very large. The
design time of ASIPs can thereby be shortened by exploiting these tools. Processors
that are designed with the MOVE Framework, are based on TTA that was explained
briefly in the previous Section 2.1. Fig. 5 depicts the general structure of the MOVE
Framework that is composed of three main components: design space explorer, soft-
ware subsystem and hardware subsystem.

The purpose of the design space explorer is to iteratively search for interesting proces-
sor configurations that satisfy design constraints set by a designer, for a given set of
applications. The main design constraints of a processor design are in general the per-
formance and the cost requirements the processor design has to meet. The main task
of the software subsystem is to produce parallel object code for the target processor
from the HLL code. The hardware subsystem is responsible for producing a hardware
description language (HDL) description of the target processor. Furthermore, both the
software and the hardware subsystem provide statistics for the design space explorer.

The architecture description file (ADF) is an essential file that fully characterizes the
structure of a single target processor. Firstly, it specifies FUs, sockets, buses and RFs
of the target processor. Secondly, it specifies connections between separate hardware
blocks of the processor. That is, connections between FUs, sockets and buses are
defined. Furthermore, the ADF contains information about immediates the target pro-

2. MOVE Framework 19

Figure 6. Software subsystem.

cessor is capable to handle.

The software subsystem is described in Section 2.2.1 and the hardware subsystem is
discussed briefly in Section 2.2.2. The design space explorer is described in Sec-
tion 2.2.3.

2.2.1 Software Subsystem

The software subsystem of the MOVE Framework is responsible for generating binary
code for a given TTA processor design that comprehends both an architecture descrip-
tion of a target processor and an application the target processor is going to execute.
The main component of the software subsystem is the compiler that is composed of
two subcomponents: the front-end and the back-end. The software subsystem contains
also two simulators: the sequential and the parallel simulator. Furthermore, tools for
profiling, trace analysis and both code and control flow viewing of an application are
provided by the software subsystem. The software subsystem is depicted in figure 6.

The purpose of the compiler front-end, i.e., the sequential code generator, is to trans-

2. MOVE Framework 20

form user applications written in a HLL into sequential TTA code. The compiler front-
end is based on GNU gcc. It consists of the compiler, assembler, linker and binary
utilities. All of these development tools have been ported to the sequential TTA target
architecture which is capable to execute sequential TTA code. The sequential TTA
target architecture contains only one bus and such a set of FUs that operations of an
application can be executed. The sequential machine performs the data transports of
the sequential code one at a time by utilizing the single bus of the sequential machine.
[1]

The sequential TTA code can further be fed to the sequential simulator to generate ex-
ecution profile of the sequential TTA program. This execution profile contains among
others information about elapsed clock cycles, code size, immediates, most utilized
operations and data transfers.

The compiler back-end, i.e., the scheduler, exploits the execution profile of the se-
quential program during the scheduling process in which the sequential TTA code is
mapped onto the available hardware resources of the target TTA processor. As output,
the scheduler produces the parallel TTA code in both binary and textual assembly for-
mats. The textual assembly format, from which one can check the quality/effectiveness
of the parallel TTA code, is described briefly in Section 2.3.1. The more detailed us-
age of the scheduler and brief descriptions of the algorithms, according to which the
scheduling process is performed, are described in [1].

Finally, the parallel TTA code produced by the scheduler can be simulated in the par-
allel simulator, which produces the execution profile of the parallel TTA program and
the utilisations of different hardware resources of the target TTA processor as its out-
put. The correct functionality of the scheduled, parallel TTA code can be verified by
comparing the result data of the parallel simulation to that of the sequential simulation.

2.2.2 Hardware Subsystem

The hardware subsystem of the MOVE Framework is responsible for generating and
evaluating the hardware of a processor design. There are two components in the hard-
ware subsystem: the hardware cost estimator and the processor generator. The purpose
of the hardware cost estimator is to evaluate the target TTA processor in terms of chip
area, power and timing. The current hardware cost estimator of the MOVE Framework
and the cost estimation methods are described in [6].

The processor generator is responsible for generating a synthesizable very high speed

2. MOVE Framework 21

integrated circuit hardware description language (VHDL) [7] code from the architec-
ture description. The current processor generator, explained more thoroughly in [8] and
[9], exploits a separate library, that contains VHDL-descriptions of the basic building
blocks of TTA processor, such as FUs, sockets, RFs and buses. If a processor design
exploits user-defined FUs, SFUs, the VHDL-descriptions of the SFUs must be imple-
mented and compiled to the library by the user.

2.2.3 Design Space Explorer

The design space explorer of the MOVE Framework is a software tool whose purpose is
to automatically find target processor configurations with favourable cost/performance
ratio for a given set of applications. It explores the design space by evaluating the cost
and the performance of a large set of processor configurations. At first the explorer
evaluates an initial target processor given as a parameter. Then, the explorer starts
to evaluate different processor configurations that are obtained by removing compo-
nents from the initial target processor configuration. That is, it is the responsibility of
the designer to determine a suitable initial target processor configuration that contains
enough resources for the needs of applications to be explored.

The design space exploration process is composed of two independent phases: re-

source optimization and connectivity optimization. The resource optimization phase
adds and removes FUs, sockets, register files, register file ports and move buses ac-
cording to a certain search algorithm. There are three search algorithms available in
the current MOVE framework: local search, bactracking search and simulated anneal-
ing [1]. The connectivity optimization phase removes connections between the sockets
and the move buses. The purpose of the connectivity optimization is to make the target
processor both faster and cheaper because the reduction of connectivity brings down
both the clock period and the chip area. In the both exploration phases, the explorer
acts as a driver program by determining the performance and the cost of a configu-
ration by invoking the scheduler and the estimator. In the following two subsections,
both of the independent exploration phases are explained in more detail.

Resource Exploration

After the evaluation of the initial machine configuration, the explorer begins to remove
components from the initial machine configuration until a minimum configuration that
is needed to perform the application is reached. A component that will be removed

2. MOVE Framework 22

next is always determined by the following quality function

quality(con f ig) =

(

(t0
t

)α
·
(

A0
A

)β
) 1

α+β

(1)

where t0 and A0 are, respectively, the execution time and the area of the initial processor
configuration, while t and A are, respectively, the execution time and the area of the
processor configuration currently being evaluated. α and β are constants reflecting,
respectively, the importance of cost and performance.

After the minimal configuration for performing the application is reached, the process
is reversed and components are again put pack in a different order than they were re-
moved until the initial configuration is again reached. Also the component to put back
in a machine configuration is determined by the quality function. These reduce/extend
phases of the resource exploration, executed 5 times, are made with different values of
α and β parameters.

After these reduce/extend phases the explorer determines which of the evaluated con-
figurations are Pareto configurations, i.e., such realizable configurations that there ex-
ists no other configurations that are both faster and cheaper. The Pareto configura-
tions can then be plotted into the illustrative cost-execution time design space. From
these Pareto configurations a designer then chooses the most interesting ones accord-
ing to his own criteria for a more detailed evaluation. Fastness, cheapness or the best
compromise between fastness and cheapness can be considered as a basic processor
configuration selection criteria.

Connectivity Exploration

In the connectivity exploration, the explorer reduces connections between the buses
and the sockets of the interconnection network of a TTA processor. Through this re-
duction of connectivity, the capasitive load of a bus is reduced. This, in turn, may
shorten the critical path of the TTA processor and, therefore, shorten the duration of the
minimum clock cycle at which the TTA processor can run. In addition, reducing con-
nections results in smaller chip area due to simpler multiplexers and de-multiplexers
in the sockets. Furthermore, the instruction size may decrease since the number of
addressable locations per bus is lower.

2. MOVE Framework 23

2.3 TTA Assembler

Occasionally, there may occur situations in which the software subsystem is incapable
to produce parallel code that is effective enough. In these situations, the TTA assembler
can be utilized for code optimizations. However, one should not move to the quite
tedious assembly level TTA coding if it can be avoided somehow. That is, one should
first try to modify the HLL-code in such a way that the scheduler manages to generate
the desired parallel code that is effective enough. Quite often, simple rearrangements
in the original HLL-code can have tremendous effects in the parallel output code of
the scheduler. If the modifications to the HLL-code take no effect and for some reason
the scheduler fails to produce the desired parallel code, the usage of assembler for
optimization purposes is justified.

Section 2.3.1 introduces the syntax and the structure of TTA assembly language the
TTA assembler reads in. The usage of the tool and the simulation of binaries produced
by this tool are discussed in Section 2.3.2.

2.3.1 TTA Assembly Language

In fact, there does not exist any formal specification of the TTA assembly language.
However, it is quite easy to figure out how it works and matches with the architec-
ture definition and binary encoding map (BEM) files by simply examining a piece of
assembly code the scheduler has produced into a textual file.

Firstly, the front-end compiler of the software subsystem divides instructions of proce-
dures of a HLL-application into separate blocks, known as basic blocks, that contain
sequential TTA assembly code [1]. In the next compilation stage, the back-end com-
piler schedules the sequential TTA code onto the resources of the target processor and
produces the parallel TTA assembly code of the application as an output. This paral-
lel TTA assembly code matches with binary code the target processor reads from its
instruction memory and it consists of the basic blocks that contain parallel TTA as-
sembly instructions. These parallel TTA assembly instructions consist of data moves
that are performed in the interconnection network of the target processor. One instruc-
tion contains always as much data moves as there are data transport buses in the target
processor. The following example contains two TTA assembly code instructions of a
basic block for a target processor that has a total of three data transport buses:

1 -> fu4.add_o [m1/-/-/fu4_o], r11 -> fu4.add_t [m2/-/ri_o4/fu4_t], ...;

fu4.add_r -> r11 [m1/-/fu4_r/ri_i4], fu4.add_r -> fu10.gtu_o [m2/-/fu4_r/fu10_o], 4 -> fu10.gtu_t [m3/-/-/fu10_t];

2. MOVE Framework 24

In the previous example, instructions are separated with semicolons (’;’) and the data
moves inside one single instruction with colons (’,’). The right arrow (’→’) implies a
data move on a transport bus of the target processor. On the left side of the right arrow
is a source location from which the data is transported to a destination location, which
is always on the right side of the right arrow. Three dots (’...’) imply an empty data
transport in which no data is transported. Furthermore, after each data move, there is
always some extra information enclosed by brackets (’[-/-/-/-]’). This additional infor-
mation consists of four fields that are separated with slash characters (’/’). The name
of the bus on which the data is transported is defined in the first field. The second field
is reserved for long immediates. It indicates whether the register for long immediates
is read or not during a data transport. If this field contains a hyphen (’-’), the register
for long immediates is not read. The name of the output socket via which the data is
transported from a source location is defined in the third field and, respectively, the
name of the input socket via which the data is transported to a destination location is
defined in the fourth field. If the third or fourth field contains a hyphen (’-’), it in-
dicates, respectively, that the data transport does not utilize output or input sockets.
This additional bus/immediate/socket information enclosed by brackets must always
be provided when assembly code is being written for the TTA assembler.

2.3.2 Usage and Simulation

The TTA assembler is a software tool that reads in three input files: the parallel TTA
assembly code of an application, the ADF of the target processor for the application,
and the binary encoding map (BEM) file of the architecture description. The BEM file,
that is produced by the software subsystem, describes how to generate instruction bit
vectors for the given target TTA processor. As output, the TTA assembler produces the
corresponding binaries of the application in the ascii-text format into a separate file.
Furthermore, the TTA assembler provides a usefull script that reads the BEM file and
produces a new textual file which shows how sockets are connected to data transport
buses and through which sockets of a register file partition one can find a certain reg-
ister rx where x is the index of the register. Especially, this register information is very
usefull when TTA assembly code is being written.

Due to the fact that the current MOVE Framework can not read in and simulate bina-
ries generated by the binary utilities of the software subsystem or the TTA assembler,
the only way to verify the correct functionality of the hand-coded TTA assembly code
is to simulate the binaries in a HW-simulator, such as ModelSim SE PLUS 5.8a

2. MOVE Framework 25

[10]. For the simulation of binaries in the HW-simulator, a HDL description of the
target TTA processor for which the binaries are generated is needed. This is the main
task of the Hardware Subsystem. A semi-automated design tool, that is the proces-
sor generator MOVEgen, translates the internal architecture description format of the
MOVE Framework into generic HDL, VHDL. The detailed usage of this software tool
is described in [9].

3. FAST FOURIER TRANSFORM

Transforms are mainly used for reducing the complexity of mathematical problems. By
applying appropriate transforms, differential and integral equations may be converted
into algebraic equations, which provide means to obtain the solutions more easily. A
well-known example of such a transform is Fourier transform decomposing a signal
into its frequency components. [11].

The Fourier transform is defined for countinuous-time signals but the DSP system ma-
nipulates discrete-time signals. Therefore, an alternative representation of the Fourier
transform is used in DSP. The discretized approximation of the Fourier transform is
the DFT, which is one of the most fundamental operations in DSP. The DFT is de-
fined for discrete-time, finite-duration signals and is a uniform sampling of the Fourier
transform of a signal, with number of samples equal to the length of the signal.

The direct computation of DFT is not reasonable due to the fact that the DFT contains
redundant computations. Several algorithms have been developed by avoiding the re-
dundancy and lowering the arithmetic complexity. These fast algorithms, which can
speed up the DFT computation, are called fast Fourier transform (FFT).

In this chapter, a couple of FFT algorithms and a principle for the index generation
of FFT are described. First, the exact definitions of Fourier transform and DFT are
given in Section 3.1. The algorithms are described in Section 3.2. Finally, the index
generation principle of the radix-4 FFT algorithm realized on TTA is explained in
detail in Section 3.3.

3.1 Definitions

The DFT is a discretized approximation of the continuous Fourier transform defined
as [11]

X(ω) = F[x(t)] =

√

1
2π

Z ∞

−∞
x(t)e(− jωt)dt (2)

3. Fast Fourier Transform 27

where j =
√
−1. The standard definition of the DFT over an N-point complex data

sequence xn is [11]

Xm =
N−1
∑
n=0

xne− j2nmπ/N (3)

In literature, it is common to use the notation

WN = e− j2π/N (4)

for the N-th root of unity. Its powers are often referred to as twiddle factors. With the
aid of this notation, the DFT transform matrix FN of order N can be written as [11]

[FN]nm = W nm
N

, n,m = 0,1, . . . ,N −1 (5)

where n and m refer to the indices of the elements of the matrix.

3.2 FFT Algorithms

Most of the FFT algorithms are based on the fundamental principle of decomposing
the computation of FFT of a sequence into successively smaller FFTs where the coef-
ficients turn out to be trivial complex numbers, such as, 1, −1, j, or − j. The manner,
with which this principle is implemented, leads to a variety of different algorithms.

The structure of this section is the following. First, the algorithms of Cooley and Tukey

are discussed on abstract level in Subsection 3.2.1. Radix-2 algorithms are described
next in Subsection 3.2.2. Radix-4 algorithms are discussed in general and the exact
definition of the radix-4 algorithm realized on TTA is given in Subsection 3.2.3.

3.2.1 Cooley and Tukey

The first and most common FFT algorithms were presented by Cooley and Tukey
(1965), after whom they are often named. Their FFT algorithms exploit the inher-
ent computational redundancy in the DFT. In fact, they invented a method of which
several FFT algorithms can be derived. This method, known as the Cooley-Tukey de-

composition, re-expresses the DFT of an arbitrary composite size N = PQ in terms of
smaller DFTs of sizes P and Q, recursively. The initial computational complexity of
the DFT is of order N2. It can be reduced down to order of N logN by exploiting the
Cooley-Tukey decomposition.

3. Fast Fourier Transform 28

X0

X5

X10

X1

X6

X11

X2

X7

X12

X3

X8

X13

X4

X9

X14

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x0
x3

x6
x9

x12

x1
x2

x5

x4

X10

X14
X13

X12
X11

X0

X9

X4

WN

F5 F3

Figure 7. Principle of Cooley-Tukey DFT decomposition, N = 15,P = 3,Q = 5

The principle of Cooley-Tukey decomposition, illustrated in Fig. 7, for the composite
sequence size of N = PQ is as follows:

1. Decimate the sequence into P sequences of size Q.

2. Compute P DFTs of size Q.

3. Multiply the resulting sequences by twiddle factors.

4. Re-order the sequences.

5. Compute Q DFTs of size P.

The previous decomposition process can again be applied to the resulting shorter DFTs
of size P or Q, if either P or Q is not a prime number. Such a recursion can be continued
until the sizes of all the resulting DFTs are prime. In such a case, a mixed radix

algorithm is obtained. If the original length N is a power of an integer number R,
N = Rr, the resulting algorithm is called radix-R FFT. In this case, the sizes of the
DFTs in the final computational structure are the same. Furthermore, when R is prime,
the algorithm is called prime radix FFT. When P is chosen as the smallest prime factor
of the size of the transform N, the time domain sequence is decimated, and the resulting
algorithm is called decimation-in-time (DIT) FFT. By reversing the role of P and Q,
decimation-in-frequency (DIF) algorithm is obtained. [11]

3.2.2 Radix-2

The simplest and the most common Cooley-Tukey algorithm is the radix-2 DIT FFT,
in which the size of the transform has to be a power of two. This is not, however, a big
limitation in practise since the size of the transform can usually be chosen freely by
the application. By choosing P = 2, Q = N/2, the DFT of size N is decomposed into
two DFTs of size N/2 followed by multiplications with twiddle factors and then (N/2)

3. Fast Fourier Transform 29

a)

X0

X4

X1

X5

X2

X6

X3

X7

x0

x1

x2

x3

x4

x5

x6

x7

W8
1

W8
3

W8
2

F2

F2

F2

F2

FN/2

FN/2

b)

X0

X4

X1

X5

X2

X6

X3

X7

F2

F2

F2

F2

FN/2

FN/2

x0

x1

x2

x3

x4

x5

x6

x7

W8
1

W8
3

W8
2

Figure 8. Principle of radix-2 FFT algorithms: a) decimation-in-time and b) decimation-in-

frequency, N = 8 [11].

DFTs of size two as illustrated in Fig. 8(a) for N = 8. A regular decimation-in-time
radix-2 FFT algorithm can be obtained by applying similar decomposition recursively
until the entire DFT is constructed only of 2-point DFTs. That is, both of the 4-point
DFTs in Fig. 8(a) would have to be decomposed into two 2-point DFTs to obtain the
regular DIT radix-2 FFT. Due to the duality between the DIT and DIF algorithms, the
DIF radix-2 FFT algorithm is obtained simply by interchanging the role of the time
domain and the frequency domain sequences [11] as depicted in Fig. 8(b). The basic
building block of the regular radix-2 FFT is a multiplication followed by the 2-point
DFT. This operation sequence is often called a radix-2 butterfly. The duality between
the DIT and DIF algorithms is also reflected to the butterflies. The 2-point DFT F2,
radix-2 DIT butterfly BDIT

2 and radix-2 DIF butterfly BDIF
2 are defined as [11]

F2 =

(

1 1
1 −1

)

; BDIT
2 = F2

(

1
W i

N

)

; BDIF
2 =

(

1
W i

N

)

F2 (6)

The total number of butterflies in an N-point radix-2 FFT, N = 2k, is (N/2) log2 N.
Thus, the computational complexity is reduced down to the order of N logN instead of
the complexity of N2 of the direct DFT computation.

Let us assume an 8-point input sequence {x0,x1,x2,x3,x4,x5,x6,x7} is stored, corre-
spondingly, to memory locations {0,1,2,3,4,5,6,7}. Then, in the first stage of com-
putation, two 4-point DFTs of the even-indexed sequence from memory locations
{0,2,4,6}, and of the odd-indexed sequence from memory locations {1,3,4,7}, are
computed and the intermediate results of even- and odd-indexed sequences stored to
memory locations {0,1,2,3} and {4,5,6,7}, respectively. In the second stage of com-
putation, four 2-point DFTs from memory locations {0,4}, {1,5}, {2,6} and {3,7} are

3. Fast Fourier Transform 30

a)

x0

x4

x2

x6

x1

x5

x3

x7

X0

X1

X2

X3

X4

X5

X6

X7

W8
0

W8
1

W4
0

W4
1

W4
0

W4
1 W8

3

W8
2

b)

x0

x1

x2

x3

x4

x5

x6

x7

X0

X4

X2

X6

X1

X5

X3

X7

W8
0

W4
0

W4
0

W8
1

W4
1

W4
1 W8

3

W8
2

Figure 9. Signal flow graphs of 8-point decimation-in-time FFT algorithms: a) bit-reversed

input, in-order output and b) in-order input, bit-reversed output [11].

computed and the final results of 8-point FFT stored, respectively, to memory locations
{0,1}, {2,3}, {4,5} and {6,7}. This kind of procedure, in which the input sequence,
intermediate results between stages of computation, and the output sequence of the
FFT computation are stored into same memory locations, is called in-place computa-

tion and the corresponding algorithm an in-place FFT algorithm. In-place FFT algo-
rithms are often used since they are compact in terms of memory consumption.

The in-place computation of DIT radix-2 FFT is possible, if its signal flow graph is
reordered in an appropriate way from many different choices of reordering. Two most
common reorderings allowing the in-place computation are presented in Fig. 9. In
Fig. 9(a), the input is bit-reversed and the output is in-order. Meanwhile, in Fig. 9(b),
the input is in-order and the output is bit-reversed.

The traditional bit-reversed input, in-order output radix-2 DIT algorithm is defined as
[12]

F2n =

[

0
∏

s=n−1

(

I2(n−s−1) ⊗F2 ⊗ I2s
)(

I2(n−s) ⊗T2s
)

]

Pr
2k

TJ =
(

IJ/2 ⊕DJ/2
)

DJ/2 = diag
(

W k
J

)

, 0 ≤ k < J/2

F2 =

(

1 1
1 −1

)

(7)

where ⊗ denotes tensor product and ⊕ matrix direct sum, Ik is the identity matrix of
order k, F2 is the 2-point DFT matrix, and Pr

N is a bit-reversed permutation matrix of
order N. The bit-reversed permutation matrix can be defined with the aid of a stride

3. Fast Fourier Transform 31

permutation as

Pr
2n =

n−2
∏
i=0

(I2(n−i−2) ⊗P2(i+2),2). (8)

The matrix PN,K is stride-by-K permutation matrix of order N defined as [12]

PN,K =

{

1, if n = mod(mK,N)+ bmK/Nc
0, otherwise

(9)

where b·c denotes floor function and mod(·, ·) is modulus function.

3.2.3 Radix-4

Computationally efficient forms of the Cooley-Tukey algorithms can be derived by
using the number four as the radix. Radix-4 FFT algorithms, in which the size of the
transform has to be a power of four, are efficient since the 4-point DFT F4 can be
computed without multiplications [11]. The 4-point DFT F4, radix-4 butterfly BDIT

4
and BDIF

4 are defined as

F4 =











1 1 1 1
1 − j −1 j

1 −1 1 −1
1 j −1 − j











; BDIT
4 = F4











1
W i

N

W 2i
N

W 3i
N











; BDIF
4 =











1
W i

N

W 2i
N

W 3i
N











F4 (10)

The traditional in-order input, permuted output, decimation-in-time radix-4 FFT is
defined as [13]

F4n =

[

0
∏

s=n−1
(I4n−s−1 ⊗F4 ⊗ I4s)Ss

2n

]

Pin4
4n (11)

Ss
N = IN/4(s+1) ⊗diag(Ms,0,Ms,1,Ms,2,Ms,3) (12)

Ms,k = (W km
4(s+1)

), 0 ≤ m < 4s −1 (13)

Pin4
4n =

n

∏
k=1

I4(n−k) ⊗P4k,4. (14)

The length N of the complex input sequence was chosen to be N = 1024 = 45 in
the realizations of Chapter 4; i.e., the radix-4 approach could be utilized in all of the
realizations. Therefore, a variation of the 1024-point complex in-place radix-4 DIT

FFT algorithm, where the input is permuted and the output is in-order, was realized
on TTA in this work. To be exact, this FFT algorithm is a different formulation of the
traditional radix-4 DIT FFT algorithm defined with the aid of Equations 11, 12, 13 and
14. These equations interleave the operations from different butterflies due to the term

3. Fast Fourier Transform 32

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

W161
W162
W163

W162
W164
W166

W163
W166
W169

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

F4

F4

F4

F4

F4

F4

F4

F4

Figure 10. Signal flow graph of the FFT algorithm for TTA in the 16-point radix-4 DIT case.

(I4n−s−1 ⊗F4 ⊗ I4s). The algorithm realized on TTA has been formulated from these
equations and can be defined exactly as

F4n =

[

0
∏

s=n−1
[Ps

4n]T (I4n−1 ⊗F4)D
s
4nPs

4n

]

Pin4
4n (15)

where Pin4
N is the input permutation matrix defined in (14), Ps

N is a permutation matrix
of order N, and Ds

N is a diagonal matrix of order N, which contains N twiddle factors
as follows

Ds
N =

N/4−1
M

k=0
diag

(

W 0
4s+1 ,W

mod(k,4s)

4s+1 ,W 2mod(k,4s)

4s+1 ,W 3mod(k,4s)

4s+1

)

. (16)

The permutation matrix Ps
N is given as

Ps
4n = I4(n−s−1) ⊗P4(s+1),4s. (17)

This permutation matrix indicates directly the access order of operands for butterfly
operations in processing column s. This can be seen in Fig. 10 where the signal flow
graph of the algorithm in (15) is illustrated.

The principle in realizing this radix-4 DIT FFT algorithm by utilizing a computer is
the following for an input sequence I16 of size 16 = 42:

1. Allocate array T of size 2 · 16 = 32 for twiddle factors W R
16 and array I of size

16 for input sequence I16. The twiddle factors are stored separately, in the order
they appear in the signal flow graph, for each stage of the FFT computation.
Therefore, the needed size s for the array of twiddle factors is s = Nlog4N.

3. Fast Fourier Transform 33

2. Initialize T by storing correct twiddle factors, which are computed beforehand,
in correct order into it.

3. Initialize I by storing the input sequence I16 into it.

4. Perform the input permutation to the input sequence I16; i.e., reorder input array
I according to the signal flow graph of Fig. 10.

5. Evaluate the four butterflies of the first stage S0.

6. For each of the four butterflies of the second stage S1:

• Compute four indexes of the input array I and evaluate the butterfly by ac-
cessing the input array I with the computed indexes and by performing the
complex butterfly multiplications and summations to the accessed values.

• Store the results of the butterfly evaluation back to the input array I into the
same index locations that were computed at the beginning of this step for
the butterfly to be evaluated.

In the steps four, five and six, the input array I has to be always accessed according
to a certain, correct method to perform the FFT computation correctly. This method
involves both the input permutation and the computation of the indexes of the input
operands of the butterflies. By applying this method, the correct indexes can be gener-

ated for accessing the input array I. Therefore, this method is called index generation.
The index generation of the radix-4 DIT FFT realized on TTA is discussed in the fol-
lowing section.

3.3 Index Generation

In this section, the fundamental index generation principle of the radix-4 DIT FFT
algorithm realized on TTA for permuting and accessing the input array I is explained
in detail. Firstly, for both the input permutation and the butterfly operand access, the
discussion gets of the ground from the exact matrix equations describing them. Then
these equations are applied for a couple of input sequences of different lengths N.
Next, the results of applying these equations are shown in tabulated forms, in which
the associations between the inputs and outputs of the index generation process are
illustrated both in decimal and binary representations.

3. Fast Fourier Transform 34

Table 1. The flow of linear i and index in the input permutation of radix-4 DIT FFT realized

on TTA for a) N = 16 and b) N = 64.

a) b)

i index i index
decimal binary decimal binary decimal binary decimal binary

0 0000 0 0000 0 000000 0 000000
1 0001 4 0100 1 000001 16 010000
2 0010 8 1000
3 0011 12 1100
4 0100 1 0001 6 000110 36 100100
.
.
9 1001 6 0110 31 011111 61 111101

10 1010 10 1010 32 100000 2 000010
11 1011 14 1110 33 100001 18 010010
12 1100 3 0011
13 1101 7 0111
14 1110 11 1011 62 111110 47 101111
15 1111 15 1111 63 111111 63 111111

Finally, based on the observations, which will be seen from the tabulated examples,
the fundamental index generation principle for both the input permutation and butter-
fly operand access is clarified and illustrated. The input permutation is described in
Subsection 3.3.1 and the butterfly operand access in Subsection 3.3.2.

3.3.1 Input Permutation

The purpose of the input permutation is to reorder the input sequence IN =

{x0,x1,x2, ...,xN−1} in an appropriate way before the actual butterfly computations on
different stages of FFT. The input permutation matrix of the radix-4 DIT FFT realized
on TTA was defined in Equation 14. Table 1 has been generated by applying this per-
mutation matrix for the input sequences I16 and I64. This table illustrates from which
index location of the original input sequence, the item xi of the permuted sequence
should be read from; i.e., the item xi of the permuted sequence equals the item xindex

of the original input sequence.

By investigating the binary representations of i and index in the table 1, the possible
associations and regularities between i and index can be examined. In Table 1(a), the

3. Fast Fourier Transform 35

c)

log2(16) = 4 bits

a) b)

log2(N) bits

.1 0 0 1 1 1 0 0 1 0 1 1 0 1

.0 1 1 1 1 0 0 0 1 1 0 1 1 0

i

index

1 1 1 1 1 0

log2(64) = 6 bits

i

1 0 1 1 1 1
index

1 1 1 0
i

1 0 1 1

index

Figure 11. The formation of index from the linear i in the input permutation of radix-4 DIT

FFT realized on TTA for a) N = 16, b) N = 64, and c) N = 4k.

index can be generated from i by swapping the two bits’ LSB- and MSB-parts of i

as illustrated in Fig. 11(a). Meanwhile, in Table 1(b), the index can be generated
from i by swapping the two lowermost and two uppermost bits with each others and
by leaving the middlemost two bits untouched as illustrated in Fig. 11(b). That is, it
seems the index can be generated from i by simply swapping two bits’ fields from the

LSB- and MSB-parts of i in pairs. The previous observation can be generally proved
for the input permutation and it is, therefore, also generally valid for the FFT transform
of size N = 4k as illustrated in Fig. 11(c).

3.3.2 Operand Access

As was already mentioned in Section 3.2.3, the permutation matrix Ps
4n defined in Equa-

tion 17 indicates directly the access order of operands for butterfly operations in pro-
cessing column s. This access order was illustrated in Fig. 10 for the transform of size
N = 16.

Let us apply the algorithm in (15) for an input sequence of size N = 256. In this
resulting 256-point FFT, the number of stages of computation, S, is S = log4 N = 4
and the number of radix-4 butterflies in a single stage, B, is B = N/4 = 64. Each
single radix-4 butterfly takes four complex input operands and produces four complex
outputs. The number of butterfly input operands, K, in each stage of the 256-point
FFT is thus K = 4B = 4N/4 = N = 256. Table 2 shows the results of applying this
algorithm from the index generation point of view.

In this table, from the different stages s of the 256-point FFT, a couple of examples
of the associations between inputs and outputs of the index generation process for the
butterfly operand access are shown. The input of the index generation process for the
butterfly operand access is a linear counter i, that always counts the input operands of

3. Fast Fourier Transform 36

Table 2. The flow of linear i and index on different stages s of the radix-4 DIT FFT algorithm

realized on TTA for N = 44 = 256.

i index
s decimal binary [8 bits] decimal binary [8 bits]

0 00000000 0 00000000
: : : :

0 64 01000000 64 01000000
: : : :

255 11111111 255 11111111

: : : :
1 00000001 4 00000100

1 : : : :
7 00000111 13 00001101
: : : :
: : : :
1 00000001 16 00010000

2 : : : :
23 00010111 53 00110101
: : : :
: : : :
1 00000001 64 01000000

3 : : : :
75 01001011 210 11010010
: : : :

the butterflies in each single stage; i.e., i counts always from zero to 255. The output
of this process is then the corresponding index where an input operand of a butterfly
is located at, and which should be somehow generated on the basis of the linear i and
the current stage s.

By investigating the binary representations of i and index on the different stages s, few
interesting observations can be made. Firstly, in the stage zero, i and the index are the
same. Secondly, in the stages one, two and three, the index can always be generated
from i by manipulating bit fields of different lengths in the LSB-part of it; i.e., in the
stage one the length equals four bits and in the stages two and three, respectively, six
and eight bits. As a conclusion from the previous observations, it can be stated that
the length of the manipulated bit field seemed to be dependent on the stage of the

3. Fast Fourier Transform 37

i

n=2s+2

1 1 0 1

rotate two bits to the right

0 1 1 1

index

Figure 12. The formation of index from the linear i in the butterfly operand access of the radix-

4 DIT FFT realized on TTA.

FFT computation. The manner, with the aid of which the bit fields of varying lengths
are manipulated, is right rotation; i.e., the index can always be generated from i by

simply rotating the lowermost n bits of i two bits to the right. For the index generation
process for the butterfly operand access, it can be generally proved that the number of
the lowermost bits of i, n, to be rotated two bits to the right depends on the stage of the
FFT, s, as

n = 2s+2, 0 < s ≤ log4N −1 (18)

As a summary, the principle for accessing the operands of the butterflies in the radix-4
DIT FFT realized on TTA can be summarized into the following two steps:

1. Compute the number of the lowermost bits of i, n, to be rotated two bits to the
right according to Equation 18.

2. Form the index by rotating the n lowermost bits of i two bits to the right.

These steps are illustrated in Fig. 12.

Implementing the index generation principle on TTA for both the input permutation
and the butterfly operand access invokes interesting questions and ideas. Especially
interesting would be to clarify how the special characteristics of TTAs, i.e., the user-
defined SFUs, could be exploited and how they affect on the performance of the FFT
computation. Among other things these ideas are experimented and the answers to
these questions given in Chapter 4.

4. HLL IMPLEMENTATIONS

Software process becomes often a bottleneck when companies are trying to launch
DSP-products on the market in time. Therefore, HLLs and HLL-compilers are used in
the co-design process of a DSP-system for both easing and fastening the work of SW
designers. It is also quite common that high demands are set for the performance of
the HLL-compiler meaning that compiled programs should be fast and fit to a compact
memory.

In this chapter, the radix-4 DIT FFT is implemented using HLL code to see how ef-
fectively the HLL-compiler of the MOVE Framework can implement the FFT applica-
tion. In the HLL implementations of this chapter, two important tools from the MOVE
Framework have been used. These are the scheduler and the design space explorer.

First, the radix-4 DIT FFT was written in ANSI-C by using only integers and C-
language’s basic operations. Thereafter, the code and the architecture of the processor
were incrementally improved to achieve better performance in terms of elapsed clock
cycles. The following improvements were made:

1. Two SFUs were added to the architecture for performing complex arithmetic.

2. An SFU was added to the architecture for performing index generation, extra
multiplications were removed from the code, and the structure of the inner loop
was modified slightly.

In the last phase of this semi-automated implementation process with the C-compiler,
the design space explorer was used to obtain the pareto curves which illustrate the
improvements that were done.

The features that are common to all the implementations are discussed briefly in Sec-
tion 4.1. Next, the C-language implementations, which are henceforth to be called the
Cases, are descriped in Sections 4.2, 4.3, and 4.4 in detail. The exploitation of the
design space explorer is discussed briefly in Section 4.5.

4. HLL Implementations 39

4.1 Common Features

The starting point for this experiment is a reference implementation that has been made
with MATLAB so that the outputs of the C-language implementations can be verified
by comparing to the output of the reference implementation.

Common to all the cases are the following issues:

• Each of the cases implement the 1024-point radix-4 DIT FFT.

• No memory optimizations for the coefficients have been considered, i.e., input
data and twiddle factors are stored into one-dimensional tables.

• Complex numbers are represented as 32-bit integers in such a way that the up-
permost 16 bits are reserved for the real part and the lowermost 16-bits for the
imaginary part.

• Computations are performed in the 16-bit fractional number presentation.

• The result of the real multiplication is always shifted 15 bits to the right in com-
plex multiplications since the result can be 32-bit at the maximum as two 16-bit
real numbers are multiplied.

• The result of the real addition is always divided by two, i.e., shifted one bit to the
right in complex additions for avoiding possible overflow. This implicates that
the final results of the transform have been divided by N since a result is always
divided by the radix, r, inside a single computation stage and there exists logr N

computation stages in total in the N-point transform.

The last issue does not cause a big problem since the scaling of the results can easily
be compensated by shifting the results the same number of bits to the left as they were
shifted to the right in complex additions.

4.2 Case 1: ANSI-C Code

The first case was intentionally made as simple as possible and no optimisations were
considered. The main purpose of the first case is only to have it working properly, i.e.,
equally as the MATLAB-reference.

4. HLL Implementations 40

The source code can be found from Appendix A. As can be seen from the source code,
it is written in ANSI-C by using only integer data-types and C-language’s basic opera-
tions. The code is written by using three loops. The input permutation is performed in
the first loop with the aid of the swapBitPairs-function that performs the needed
bit-level manipulation to the linear index as was already illustrated in the Fig. 11(c) in
Chapter 3.

The other two loops are nested and they are performing the butterfly computations
through the stages of the N-point FFT application. The outer of the loops iterates
through the stages, i.e., from zero to log4N − 1. The inner loop iterates always from
zero to N − 1 in the incremental steps of four. The N/4 radix-4 DIT butterflies of a
single computation stage are evaluated in the inner loop.

One radix-4 DIT butterfly is evaluated in the kernel of the inner loop. This is done by
first computing the correct indices from where the input operands of the butterfly are
read. The operands can be accessed by using the function r4bfin_idx that performs
the needed bit-level manipulation to the linear index as was already illustrated in the
Fig. 12 in Chapter 3. Next, the real and imaginary parts of the operands are read from
the output-buffer into variables. After that the complex multiplications and additions
of a butterfly can be performed as shown in Appendix A. Finally, by exploiting the
in-place computation, the results of the evaluation of a butterfly can be stored back to
the same index locations from where the operands were read, as can be seen from the
code.

It can be seen by examining the code that quite many variables are required for storing
the real and imaginary parts of the complex numbers. In addition, and-, shift-, and
or-operations are needed when complex numbers are processed in the code. These op-
erations make the code quite tedious to follow. For the previous reasons, the following
data-type and macros were added to the code:

typedef union {

int word;

struct {

short int imag;

short int real;

}cplx;

}Complex;

#define Real(a) (a.cplx.real)

#define Imag(a) (a.cplx.imag)

#define Word(a) (a.word)

Now a complex number can be represented conveniently with the data-type. The ac-
cessing of the number becomes also easier by using the macros. By writing the code of

4. HLL Implementations 41

Appendix A by using the union-type and the macros, the following of the code became
easier in pursuance of the functionality and the performance remained constant.

4.3 Case 2: SFUs for Complex Arithmetic

As can be seen from the Equation 10 in Chapter 3, the evaluation of the radix-4 DIT
butterfly requires both complex multiplication and addition. These are operations for
which custom hardware can be easily tailored to obtain more computational power.
Thus, in this case, two separate SFUs were added to the architecture of the processor
for performing complex arithmetic.

The basic structure of the code remained constant meaning that loop structure remained
the same as in the previous case. Meanwhile, the structure of the kernel of the inner
loop became much simpler. Now, one can just call the functions that are simulating
the functionality of the SFUs from the scheduler’s backend as can be seen from Ap-
pendix B.

The HW implementations of these SFUs are discussed briefly at the block diagram
level in the following subsections. The complex multiplier is described in Subsec-
tion 4.3.1 and the complex adder in Subsection 4.3.2.

4.3.1 Complex Multiplier

The block diagram of the complex multiplier is presented in Fig. 13. The complex
multiplier calculates the product of two 32-bit complex numbers in which the upper-
most 16 bits are reserved for the real part and the lowermost 16-bits for the imaginary
part. As can be seen from Fig. 13, the product can be calculated by using four real
multipliers and two real adders.

The 16-bit real multipliers calculate the needed partial products of the real and imagi-
nary parts as illustrated in the block diagram of Fig. 13. The partial products are shifted
15 bits to the right before the additions to obtain the real and imaginary parts of the
product. The scaling can be implemented easily using only correct wiring, as depicted
in Fig. 13. This scaling has to be done since the result of the multiplication can be 32
bits in length at the maximum as two 16-bit numbers are multiplied with each other.
The loss of accuracy is, therefore, minimized only to the loss of the 15 least significant
fractions.

4. HLL Implementations 42

CMP

_
X

X

+

X

X

0x7FFF0000

result

= MultiplierX CMP = Comparator

+ = Adder = Register

= Wiring= MUX

operand

RE

RE

IM

IM

RE

IM

(multiplier)

(multiplicand)

trigger

(complex product)

Figure 13. Block diagram of the complex multiplier.

The comparator is used for detecting such kind of a situation in which the value of the
multiplier is one (0x7FFF0000). In that case, the value of the multiplicand can directly
be passed to the result register by the mux. The mux is controlled by the comparator
as illustrated in Fig. 13.

Furthermore, the complex multiplier has been pipelined by using pipeline registers
between the real multipliers and the real adders. Higher clock frequencies can be
obtained for the complex multiplier in the synthesis by using the pipelining. Since
there are registers also in the inputs and in the output of the complex multiplier, the
latency of the unit is three clock cycles.

4.3.2 Complex Adder

The C-language function simulating the functionality of the complex adder can be
found from Appendix B. The cadd-function could be written by simplifying the
definition of the radix-4 DIT butterfly, which can be found from the Equation 10 in
Chapter 3. The definition was simplified as much that the real and the imaginary parts
of the complex sums could be written by using the real and the imaginary parts of
the four input complex numbers to be added together. There are four slightly differ-

4. HLL Implementations 43

operand2

operand0

+/-

+/-

+/-

+/-

+/-

+/-

operand1

operand3

RE

IM

RE

RE

RE

IM

IM

IM

OP1

OP2

OP5

OP3

OP4

OP6

CTRL1

CTRL2

trigger
(format)

OP1

OP2

OP3

OP4

OP5
OP6

CTRL2
CTRL1

result

(complex sum)

= MUX

= Register

= Wiring= Combinatorial
 Logic

+/- = Add/Sub
 Unit

OP

RE

IM

Figure 14. Block diagram of the complex adder.

ent summation formats in the evaluation of the radix-4 DIT butterfly. These formats
can be simulated easily by using a simple switch-case structure as can be seen from
Appendix B. In this switch-case structure, the summation format is used to select the
complex summation to be performed.

This kind of a structure can also be implemented quite easily on HW. Thus, it was
decided to implement the complex adder as depicted in Fig. 14. The four complex
numbers to be added together are written to the operand registers of the unit. The
summation format (0, 1, 2, or 3) is written to the trigger register of the unit, i.e., the
format triggers the unit. The unit has one output: the result of the single summation
format. Thus, to be able to evaluate the complex summations of the single radix-4 DIT
butterfly, all the four summation formats have to be calculated meaning that the unit
has to be triggered four times with all the values 0, 1, 2, and 3.

The different summation formats can be computed by using six 16-bit add/sub-units as
can be seen from Fig. 14. The add/sub unit can perform either addition or subtraction.
The operation to be performed by this unit is selected by a one-bit opcode. In addition,
the add/sub unit shifts its result one bit to the right to avoid the possible overflow.
This can be seen also from the SW simulation function of Appendix B. The opcodes
can be specified easily on the basis of the format. A combinatorial logic network can
produce the needed opcodes for the add/sub-units in different summation formats as

4. HLL Implementations 44

can be seen from Fig. 14. Also the multiplexors are controlled by using this network.
Since there exists registers only in the inputs of the complex adder, the latency of the
complex adder is one clock cycle.

4.4 Case 3: SFU for Index Generation

The index generation is a very important operation in the FFT computations as was al-
ready discussed in Chapter 3. The index generation of the radix-4 DIT FFT algorithm
realized in this work can be made in the bit-level, i.e., by manipulating bit-level rep-
resentations of the data items present in the index generation process. These bit-level
operations can be performed fastly on HW, by using custom HW. Thus, in this case, an
SFU was added to the architecture to perform index generation.

This SFU is described in Subsection 4.4.1. The structure and the functionality of the
source code are explained briefly in Subsection 4.4.2.

4.4.1 Index Generator

The index generator is capable of performing the memory address arithmetics that is
needed in both permuting the input and accessing the operands of the butterflies. The
index generator has four inputs:

1. Base address of the input buffer (operand 0).

2. Base address of the output buffer (operand 1).

3. Stage of the FFT computation (operand 2).

4. Index, i, which is linearly traversing through the inputs of the radix-4 DIT but-
terflies (trigger).

Based on the four inputs, the index generator produces, concurrently, two memory
addresses as its outputs:

1. The first one is an address of the input buffer and it is generated for the input
permutation.

2. The other one is an address of the output buffer.

4. HLL Implementations 45

Wiring

address of input buffer
 (result 0)

address of output buffer
 (result 1)

+

32

32

3

mux
01234

32

32

Wiring for
shifting two bits
to the left

 stage
(operand 2)

32

linear index
 (trigger)

32

Wiring for
shifting two bits
to the left

+

32

mux
01234

32

base address of output buffer
 (operand 1)

32

32 32 32
32

32

Wiring for
permuting the
linear index
(Input Permutation)

Wiring for the
rotation of the
linear index
(Operand Access)

base address of input buffer
 (operand 0)

32

Figure 15. Block diagram of the index generator.

The block diagram of the index generator is depicted in Fig. 15. The two output ad-
dresses are generated according to a method, which depends on the current stage of the
FFT computation. In the first stage, zero, the address of the input buffer is generated
according to the input permutation principle, i.e., by manipulating the lowermost ten
bits of i as illustrated in Fig. 11(c) in Chapter 3. This bit-level manipulation can be
implemented on HW by using only correct wiring as can be seen from Fig. 15. Due
to the implementation technique of the load-store unit (LSU), the manipulated index
has to be shifted two bits to the left before the address of the input buffer is computed
by adding the base address of the input buffer together with the manipulated index as
illustrated in Fig. 15. In the stage zero, the address of the output buffer is always the
linear address that corresponds to the value of the linear index, i. Thus, the results of
the butterfly evaluations are stored linearly, in the increasing order, to the output buffer.

In the other stages (1, 2, 3, and 4), the address of the input buffer is negligible from
the FFT computation point of view, since the in-place computation is performed inside
the output buffer. Thus, the address of the input buffer is driven to zero in the other
stages as can be seen from Fig. 15. Meanwhile, the address of the output buffer is
now generated by applying the operand access principle of the butterflies which was
discussed in Section 3.3.2. I.e., the linear index, i, is first rotated two bits to the right
as illustrated in Fig. 12 in Chapter 3, and then added together with the base address of
the output buffer as shown in the block diagram.

4. HLL Implementations 46

4.4.2 Source Code

The source code of the case 3 can be found from Appendix C. The source code has
been further implemented by using three loops. The input permutation and the butterfly
evaluations of the stage zero are performed in the first loop by reading the operands of
the butterflies from the input buffer by using the index generator. The butterflies are
evaluated next by computing the needed complex multiplications and additions. In the
end of the first loop, the results of the butterfly evaluations are written linearly to the
output buffer.

The other two loops are nested and they are performing the butterfly evaluations of
the other stages (1, 2, 3, and 4). The structure of the inner loop is equal to that of the
first loop but now the input operands are read from the output buffer and the results of
the butterfly evaluations are also written to the same buffer by exploiting the in-place

computation characteristic of the realized radix-4 DIT FFT algorithm.

Instead of one single radix-4 DIT butterfly, two butterflies are evaluated at a time inside
both the input permutation and the inner loop to obtain more computation speed. The
scheduler of the MOVE Framework can namely exploit the ILP better when the C-code
is written in this way.

Extra multiplications have been also removed from the code. Every fourth complex
multiplication can be removed from the code since every fourth twiddle factor, W4k,
is one. Thus, there is no need to multiply the input operands x4k into the complex
multiplier but they can be temporarily stored for waiting the complex addition to take
place.

4.5 Explorations

After the C-codes of the cases were implemented, the cases were scheduled and sim-
ulated with the tools of the software subsystem. This was done to be able to verify
the correct functionality of the cases. After the cases were verified, the design space
explorer was used for obtaining the pareto curves, and for optimizing the connectivity.

The resource optimization phase is explained in Section 4.5.1 and the connectivity
optimization phase is discussed in Section 4.5.2.

4. HLL Implementations 47

2 4 6 8 10 12 14
x 10

4

0

1

2

3

4

5

6

7

8

9 x 105

Chip Area [gates]

C
lo

ck
 C

yc
le

s

Case 1: ANSIC Code
Case 2: SFUs for Complex Arithmetic
Case 3: SFU for Index Generation

Figure 16. Results of resource explorations. The three configurations selected for the connec-

tivity optimizations are marked with arrows in the figure.

4.5.1 Resource Optimization

In the resource exploration, the amount of resources was chosen to be oversized in the
initial processor configurations so that the design space would be large enough. This
meant that there were 16 buses and four FUs supporting each needed operation set.
RFs were chosen to contain enough registers. The pareto curves of the cases, obtained
from the resource explorations, are shown in Fig. 16. The chip area is shown in the
x-axis and the number of elapsed clock cycles in the y-axis of the pareto curves.

It can be seen from the pareto curves that the improvements made to the code and
the architecture have been succesfull. The complex multiplier and the complex adder
together improved the cycle count about 19%. The index generator further improved
the cycle count about 85% which is a tremendous improvement.

4.5.2 Connectivity Optimization

After the resource optimization phase, one processor configuration from each of the
cases was chosen to the connectivity optimization phase. A medium configuration
having a chip area of about 50 kgates was chosen for the cases one and two. The
medium configuration can be considered as a compromise between processor cost and

4. HLL Implementations 48

0 50 100 150 200 250 300 350 400 450 500
3

4

5

6

7

8

9 x 10
4

Connections Removed

C
hi

p
A

re
a

[g
at

es
]

Case 1: ANSIC Code
Case 2: SFUs for Complex Arithmetic
Case 3: SFU for Index Generation

Figure 17. Results of connectivity optimizations on processor configurations shown in Fig. 16.

performance meaning that the costs are relatively low and the performance is, how-
ever, relatively high. A high-performance configuration having a chip area of about 88
kgates was chosen for the case three to be able to see what kind of a performance can
be obtained for the 1024-point radix-4 DIT FFT by using the scheduler.

The connectivity exploration did not improve the performance. However, the needed
chip area decreased notably as can be seen from Fig. 17. The essential characteris-
tics of the three cases are shown in Table 3. It can be stated by examining Table 3
that the maximum performance for the 1024-point radix-4 DIT FFT was 12 kcycles
when the application was written in C-code and the code was compiled using the soft-
ware subsystem of the MOVE framework. The following two chapters show how fast
and effectively the 1024-point radix-4 DIT FFT can be performed by using the TTA
assembler.

Table 3. The characteristics of the cases.

Case Configuration Clock Cycles Connections Removed Area [kgates]

1 Medium 186487 100 41
2 Medium 136810 100 43
3 High-Performance 12366 400 59

5. OPTIMIZED ASSEMBLER IMPLEMENTATION

In the DSP application domain, many optimization techniques are exploited in the
advanced HLL compilers to be able to produce effective binary code. One of these
techniques is Software Pipelining which allows utilization of the available HW level
parallelism by the program code.

Due to the fact that SW pipelining was not effectively supported by the current HLL
compiler of the MOVE Framework, the performances of the HLL implementations
were not below the desired level in terms of clock cycles. For this reason, it was de-
cided to optimize the 1024-point radix-4 DIT FFT manually. First, an effective method
was discovered to get the performance of the FFT computation below the desired level
and then a TTA assembly language description of this method was written. Finally, a
TTA processor, on which the designed assembly code can run on, was constructed and
analyzed.

This manual implementation process with the aid of the TTA assembler is described in
detail in this chapter. The method for improving the performance of FFT computation
is discussed in Section 5.1. The assembly programming process is described in detail in
Section 5.2 and the HW implementation of the processor, respectively, in Section 5.3.

5.1 Operation Scheduling

It was found out by analysing different choices for improving the performance of FFT
computation that pipelining, in which the utilizations of performance-critical opera-
tions would be as high as possible, could be implemented fairly easily also manually.
In the same analysis, it was also found that with the aid of this kind of pipelining, the
performance of FFT could be improved remarkably. For these reasons, it was decided
to schedule the operations of the 1024-point complex radix-4 DIT FFT manually in a
pipelined fashion. The needed operations for performing the FFT are described in Sub-
section 5.1.1. In Subsection 5.1.2, the scheduling principle is described with the aid of

5. Optimized Assembler Implementation 50

an example. An effective manner for the evaluation of several radix-4 DIT butterflies
is described in Subsection 5.1.3.

5.1.1 Operations

The manual schedule was done with the aid of the same user-defined operations whose
HW-implementations were already described in Chapter 4. Memory addresses of
operands can be generated with the aid of operation AG, which has always two re-
sults. The first is an address of the input buffer and the second an address of the output
buffer. Complex multiplications can be performed with the aid of operation CMUL
and the complex additions, respectively, with the aid of operation CADD.

Real addition is needed for two purposes; for generating both linear indices of the
address generation and linear addresses of the twiddle factors. The real addition is
denoted with the operation ADD. Data memory accesses can be performed with the
aid of operations LD and ST. The LD operation loads a word from the memory and
the ST operation stores a word to the memory. Input operands of the butterflies and
twiddle factors need to be loaded from the data memory and the results of butterfly
evaluations must be stored back to the data memory. The operations ADD, LD and ST
are overwhelmingly the most often used operations in the FFT computation. Thus, an
effective utilisation of these operations is very essential from the performance point of
view, i.e., there should not exist such clock cycles, in which those operations are not
simultaneously utilized.

Furthermore, comparison operations EQ and GTU are needed for evaluating condi-
tional moves and operation JUMP for jumping in the loops. The essential characteris-
tics of operations to be manually scheduled is shown in Table 4.

5.1.2 Scheduling Principle

The radix-4 DIT butterfly defined in (10) can be computed as


















y0 = x0 +W1x1 +W2x2 +W3x3
y1 = x0 − jW1x1 −W2x2 + jW3x3
y2 = x0 −W1x1 +W2x2 −W3x3
y3 = x0 + jW1x1 −W2x2 − jW3x3

(19)

where xi denotes an input operand of a butterfly, Wi is a twiddle factor, and yi an output
operand of a butterfly.

5. Optimized Assembler Implementation 51

Table 4. The characteristic of the operations needed for the FFT application.

Operation Latency Number of inputs Number of outputs

AG 2 4 2
CMUL 3 2 1
CADD 1 5 1
ADD 1 2 1
LD 3 1 1
ST 3 2 0
EQ 1 2 1

GTU 1 2 1
JUMP 4 1 0

Firstly, let us figure out how a single radix-4 DIT butterfly could be effectively sched-
uled with the aid of the operations tabulated in Table 4. In Appendix D, there is a chart,
in which this effective schedule is depicted. In this chart, clock cycles are increasing
in the horizontal direction, and they are marked with yellow color. The needed data
moves between different operations for performing a single butterfly are highlighted
with red and blue colors in the vertical column on the left margin of the chart. On the
left side of the column for data moves, also the buses, on which the single data moves
are performed, are highlighted with gray color. The data items that are transported on
the buses in different clock cycles are depicted with green boxes.

Let us go this chart through from clock cycle zero to clock cycle 16 for clarifying the
schedule of a single butterfly. In cycle zero, the moves highlighted with blue color have
to be performed for initialisation purposes, i.e., the input operands of operation AG are
transported to the operand registers and addition operation ADD1, for the generation
of linear indices, is triggered by transporting zeros to both the operand and trigger
registers. The next operation that should be triggered is the address generation, AG, so
that the address of the first input operand of the butterfly, ax0, would be obtained. As
the latency of operation ADD1 is one, the result of the addition is ready in cycle one.
Therefore, operation AG is triggered in cycle one by transporting the first linear index,
0, from the output of the addition operation to the trigger register of the AG-operation
on bus zero. Furthermore, to be able to compute the following linear index that should
be one, the new addition operation is triggered by transporting the previous result of
addition, 0, to the operand register and value one from RF to the trigger register.

In cycle two, the next linear index, 1, is ready as the result of addition and the gen-
eration of the address of the second input operand, ax1, can be triggered on bus zero.

5. Optimized Assembler Implementation 52

As in the previous cycle, the addition operation must be again triggered for comput-
ing the next linear index, 2. In cycle three, the generation of the address of the third
input operand, ax2, is triggered equally as that of the next linear index, 3. In addi-
tion, the result of the first AG operation, ax0, is ready in cycle three as the latency of
AG-operation is two clock cycles. Therefore, the loading of the first input operand of
the butterfly, x0, can be triggered from the data memory with the aid of operation LD.
The address of the first input operand, ax0, must also be stored to the RF so that the
results of the evaluation of the butterfly could later be stored back to the data memory.
Also the generation of the address of the first twiddle factor, aW1, has to be triggered
in cycle three by transporting number four from RF to the trigger register of operation
ADD2 that is linearly computing the addresses of the twiddle factors. The generation
of addresses of twiddle factors has to be started precisely in cycle three so that the
first factor, W1, would be loaded from the data memory in cycle seven when the first
complex multiplication can be performed.

In cycle four, the generation of ax3 is triggered equally as the load of the second input
operand, x1. Address aW1 is also ready in this cycle, i.e., the load of W1 must be
triggered. In cycles five and six, the loads of operands x2 and x3 as well as that of
factors W2 and W3 are triggered. Furthermore, the memory load of operand x0 is ready
in cycle six and it has to be stored into RF, thus it is the first operand of the complex
addition to be triggered in cycle 12.

In cycle seven, the loads of x1 and W1 are ready. Thus, the first complex multiplication
can be triggered on buses eight and nine. Equally, in cycles eight and nine, the loads of
operands x2 and x3 as well as the loads of factors W2 and W3 are ready and the rest of
the multiplications of the butterfly can be triggered. The results of the first, second and
third multiplication are ready, respectively, in cycles 10, 11 and 12. Therefore, the first
complex addition for computing result y0 can not be triggered until cycle 12, since all
the three results of multiplications have to be ready before the first complex addition
can be triggered. Therefore, the first and the second result of complex multiplication
have to be temporary stored into RF in cycles 10 and 11.

In cycle 12, the complex addition is triggered for the first time by transporting prod1−
prod3 and x0 to the operand registers, and zero from the RF to the trigger register. In
cycles 13, 14, and 15, the complex addition is further triggered by the values one, two,
and three for computing, respectively, y1, y2, and y3. Furthermore, the results y0, y1,
and y2 will be ready in these cycles and they can be stored back to the data memory
into the same locations ax0, ax1, and ax2 from where they were loaded in cycles three,

5. Optimized Assembler Implementation 53

four and five. In the last cycle of the evaluation of the butterfly, the last result, y3,
becomes ready and it can be stored back to the data memory.

5.1.3 Identification of Iteration Kernel

The radix-4 DIT FFT can be computed with the aid of two nested loops as was already
explained in Chapter 4. The computation stages are iterated in the outer of these loops,
and the butterflies of a single computation stage are evaluated inside the inner loop. To
be able to compute the FFT effectively, the structure of the inner loop should be such
that the utilisations of operations accessing data memory, i.e., LD and ST, would be
as high as possible. In practice, if loads of both an input operand of a butterfly and a
twiddle factor, and a store of a single result would be triggered simultaneously in as
many clock cycles as possible, the accessing of data memory would be optimal. In
other words, the inner loop should be scheduled in such a way that two loads and one
store take place simultaneously in as many instructions as possible.

To obtain this situation, the operations of the radix-4 DIT FFT were scheduled man-
ually a little bit further with the aid of same kind of a chart as in the case of a single
radix-4 DIT butterfly. This new chart was quite easy to implement with the aid of the
chart of Appendix D, thus the schedule of Appendix D should only be copied a couple
of times successively. It can be found from Appendix E. In this chart, the schedules of
different butterflies are highlighted with different colors, i.e., with green, red, yellow
etc., and the data items moving on the buses are also marked with text inside the boxes.

From the chart of Appendix E, it can be seen that starting from clock cycle 13 two load
operations and one store operation can be triggered simultaneously. In this clock cycle,
the first result, y0, is stored back to the data memory. Thus, the utilisations of LD and
ST operations are optimal after cycle 13. Some regularities can be searched from the
schedule after this cycle. If the same operations can be repeated from one clock cycle
to another, the inner loop can be implemented with the aid of quite a clever manner. In
this manner, the operations that take place before this regularity, which is henceforth
to be called the Kernel, are executed first and then this kernel can be looped until the
evaluation of the last butterfly of the stage is approaching. After an appropriate number
of executions of the kernel, the looping of the kernel can be stopped and the operations
that still have to be executed after the kernel can be performed.

It can be seen by examining Appendix E that the kernel really exists. The chosen
kernel to be implemented is framed twice by the black rectangle in Appendix E. The

5. Optimized Assembler Implementation 54

Figure 18. The instructions of the kernel.

four instructions of the kernel are illustrated in Fig. 18.

5.2 Assembly Coding Process

In this section, the coding process for producing the parallel TTA assembly code, that
is implementing the scheduling method of the previous section, is explained in detail.
First, the essential resources, on which the implemented assembly code is based on,
are specified in Subsection 5.2.1. Then the structure and the functionality of the imple-
mented assembly code is described in Subsection 5.2.2. The manual optimization of
the connectivity of the processor can be done with the aid of the implemented assembly
code. This is descriped in Subsection 5.2.3.

5.2.1 Resources

It is fairly easy to figure out the essential resources of the processor to be programmed,
such as FUs, RFs, buses, and sockets, by getting of the ground from the schedule chart
presented in Appendix E.

Firstly, two addition operations are simultaneously triggered in cycle 16 on the buses
two and five so that two FUs supporting the ADD operation are needed. Secondly, two
load and one store operations are simultaneously triggered on the buses 3, 7, and 16
indicating that three LSUs are needed for accessing the data memory. Furthermore, a
dedicated FU for each of the three user-defined operations (AG, CMUL, CADD) and
two FUs supporting comparison operations EQ and GTU are needed. One of these
comparator FUs is used in evaluating conditional moves that contain jumps, and the
other in comparisons that chase up the current stage of the FFT computation so that

5. Optimized Assembler Implementation 55

Table 5. Characteristics of the FUs.

FU Latency Supported Operations Purpose of Use

FU1 2 AG Generate address of operand

FU2 3 CMUL Complex multiplication

FU3 1 CADD Complex addition

FU4 1 ADD, SUB Generate linear index

FU5 1 ADD, SUB Generate address of factor

FU6 3 LD, ST Load operand

FU7 3 LD, ST Load factor

FU8 3 LD, ST Store result

FU9 1 EQ, GTU Evaluation of stage

FU10 1 EQ, GTU Conditional jumps

the data memory area, from which the input operands are loaded, can be decided. The
essential characteristics of the FUs of the processor are shown in Table 5.

Thirdly, by examining Appendix E, it can be seen that a total of 10 memory addresses,
i.e., the addresses ax0−ax9, have to be stored temporarily into the RF on the bus four
in cycles 3-12 to be able to store the results y0 − y9 back to the data memory later in
cycles 13-22 on the buses 15 and 16. Therefore,

1. 10 registers are needed for the temporary storage of the memory addresses, axk,
that are generated in cycle t and used for the last time in cycle t +10.

2. After cycle 12, the situation is always such that one address, axk, is generated
by the address generator and one address, axk−10, is used by the LSU for the last
time and can, therefore, be removed.

Due to these two reasons, an address FIFO containing 10 regis-
ters had to be implemented for the temporary storage of the adresses
{axk−9,axk−8,axk−7,axk−6,axk−5,axk−4,axk−3,axk−2,axk−1,axk} using 10 sepa-
rate RFs as illustrated in Fig. 19(a). Respectively, a same kind of FIFO is needed for
storing the input operands, x4k, that must not be multiplied in the complex multiplier
as every fourth twiddle factor, W4k, equals one. The size of this other FIFO has to
be two registers. This can be seen by examining the contents of buses 8 and 11 in
cycles 6, 10, 12, and 14 in Appendix E. Registers r11 and r12 are reserved for this
other FIFO. In addition, a total of 11 integer and 2 boolean registers are needed for
different storage purposes, i.e., there is a total of 23 registers in the integer RFs and,

5. Optimized Assembler Implementation 56

a)

ax(k)

r10 r9

ax(k-1)

r7

ax(k-3)

r6

ax(k-4)

r5

ax(k-5)

r4

ax(k-6)

r3

ax(k-7)

r2

ax(k-8)

r1

ax(k-9)

r8

ax(k-2)

 RF 1 RF 2 RF 3 RF 4 RF 5 RF 6 RF 7 RF 8 RF 9 RF 10

AG

FU1

LSU

FU8

= FIFO = RF= Register = Function Unit

b)

 RF 2

r2

r13

 RF 1

r1

r12

 RF 3

r3

r14

 RF 4

r4

r15

 RF 5

r5

r16

 RF 6

r6

r17

 RF 7

r7

r18

 RF 8

r8

r19

 RF 9

r9

r20

 RF 10

r10

r21

 RF 0

rv

r11

r22

Figure 19. Aspects of the integer RFs: a) register FIFO for addresses and b) locations of the

registers in the integer RFs.

respectively, two for the boolean values. There are 11 integer RFs in the processor in
total as illustrated in Fig. 19(b). In addition, there is one boolean RF in the processor
containing those two boolean registers. The usage of integer and boolean registers is
shown in Table 8.

The number of buses can easily be decided by examining the discovered kernel and
the address FIFO which are illustrated, respectively, in Fig. 18 and 19(a). Firstly, it
can be seen from Fig. 18 that there exists a total of 17 buses in the kernel. However,
one additional bus is needed for the move operations of the kernel since the load of
the input operand of a butterfly is performed conditionally either from the input or the
output buffer. In the first stage of the FFT computation, the input permutation is always
performed by loading the operands of a butterfly from the input buffer according to the
permutation principle explained in Chapter 3. Then the butterfly is evaluated and the
results of the evaluation are stored to the output buffer. In the other stages, the in-place

computation can be exploited by loading the operands and storing the results of the
evaluation of a butterfly into same locations of the output buffer. That is, a total of 18
buses must be reserved for the kernel.

Secondly, the address transports from one register to another in the address FIFO can
only be performed via sockets and buses since this FIFO is implemented with the aid
of RFs as illustrated in Fig. 19(a). Therefore, a total of nine buses is needed for moving
the address FIFO one step forward in every clock cycle that takes place after the FIFO
has been once filled up with addresses. Respectively, one bus is required for moving
the FIFO for input operands one step forward.

5. Optimized Assembler Implementation 57

Table 6. Characteristic of the buses.

Number of Buses Width Purpose of Use

18 32 Kernel operations

9 32 Move Address FIFO forward
1 32 Move Operand FIFO forward
2 1 Transport results of comparators

1 32 Transport Long immediates

TOTAL 31

Thirdly, a 1-bit bus is needed for both of the comparators to be able to move the 1-
bit result of the comparator into the boolean RF. Furthermore, one bus is dedicated
for moving long immediates. Moving of short immediates is not supported on any
of the buses as the bits reserved for short immediates would increase the size of the
instruction. The essential characteristics of the needed buses is summarized in Table 6.

Now the needed FUs, RFs, and buses of the processor have been specified. In addi-
tion to the buses, the sockets are also needed by the interconnection network of the
processor to be able to transport data between FUs and RFs. Data transports are made
possible by connecting the sockets to the buses. The operand and trigger registers of
the FUs must be connected to corresponding input sockets and the result registers of
the FUs to corresponding output sockets. Also the RFs have to be connected to input
and output sockets so that, respectively, a write and a read of a register would be pos-
sible. The types of the sockets are tabulated and the total number of them shown in
Table 7.

Table 7. Types of the sockets.

Type of Socket Number of Sockets Purpose of Use

FU input 26 Transport data from bus into FU
FU output 12 Transport data from FU onto bus
RF input 15 Transport data from bus into register
RF output 20 Transport data from register onto bus
PC input 1 Transport data from bus into PC
IMM output 1 Transport data from immediate register

onto bus
TOTAL 75

5. Optimized Assembler Implementation 58

Table 8. Usage of registers.

INTEGER RFs

Registers Purpose of Use

rv Four register
r1-r10 Address FIFO

r11, r12 FIFO for input operands

r13 Store the 2nd complex product of a butterfly.
r14 Store the 3rd complex product of a butterfly.
r15 Stage register
r16 Zero register
r17 One register
r18 Two register
r19 Three register
r20 Store Base address of input buffer

r21 Store Base address of factor buffer

r22 Store Base address of output buffer

BOOLEAN RF

b0 Select input/output buffer for the operand load
b1 Evaluate conditional jumps

5.2.2 Code

The parallel TTA assembly code is composed of six basic blocks whose purpose is
discussed in the following paragraphs. The code can be found from Appendix F and
the structure of the code is depicted in Fig. 20. The registers used by the code can be
found from Table 8.

There are 10 instructions in basic block 0 which performs initialisations. In instructions
0-8, the needed long immediates are transported to the registers from the immediate
unit on bus 31 which is dedicated for transporting long immediates. In instruction 9,
the address generators are initialized with the base addresses of the memory buffers and
the last index of the kernel (1013) is transported to a temporary register from which it
can be read when the end-condition of the kernel is being evaluated.

Basic block 1 is the first block of the outer loop containing two instructions. The
evaluation of a computation stage is always started in basic block 1 by updating the
stage into the address generator. In addition, the stage is compared with zero so that the
correct data memory area, from which the input operands are loaded, can be selected
with the aid of the boolean register b0. If the stage equals zero, this register is true,

5. Optimized Assembler Implementation 59

BB0: 10 instructions

Initialize

BB1: 2 instructions

Outer loop:
- Evaluate stage
- Reset index adder

BB2: 15 instructions

Inner loop’s prologue:
- Start FFT pipeline

BB3: 4 instructions

Kernel:
- Execute kernel operations
- Evaluate stop-condition

BB4: 13 instructions

Inner loop’s epilogue:
- Stop FFT pipeline

BB5: 7 instructions

Outer loop:
- Increment stage
- Evaluate stop-condition

End

Start

End Condition:

Is i > 1013 ?

YesNo

End Condition:

Is Stage > 4 ?

YesNo

Figure 20. Flowchart illustrating the structure and the control flow of the assembly code.

i.e., its value is one, and the input operands must be loaded from the input buffer in
the instructions 14-34. I.e., the load move of bus six (m6) is always executed in the
stage zero in these instructions. In the other stages, the boolean register b0 is false and
the input operands are loaded normally from the output buffer meaning that the load
move of bus seven (m7) is executed. The index adder (fu4) must also be cleared in

5. Optimized Assembler Implementation 60

Table 9. Essential operation sequences of the inner loop (basic blocks 2, 3, and 4).

Operation Sequence Occurs on Move Buses

Conditional jump m1, m2, m31

Generation of linear index m3, m5

Generation of operand address m4

Load of operand m6, m7

Adding address to FIFO m8

Complex Multiplication m9, m10

Generation of factor address m11, m13

Load of factor m12

Complex Addition m14, m15, m27, m29, m30

Store of result m16, m17

Moving Address FIFO one step forward m18-m26

Moving Operand FIFO one step forward m28

instruction 11 so that the generation of linear indices can be restarted.

The inner loop is composed of basic blocks 2, 3, and 4. The functionality of the inner
loop is discussed in the following four paragraphs. The buses, on which the essential
operation sequences of the inner loop are performed, are tabulated in Table 9 to ease
the following of the code.

Basic block 2 operates as the prologue of the inner loop. Its purpose is to execute the
operations that have to be performed to get the performance-critical resources, such as
LSUs, fully utilized. The operations that occur before the kernel, i.e., the operations
from cycles 1-15 in Appendix E, are, therefore, executed in the 15 instructions of the
basic block 2. In addition to operations presented in Appendix E, also the FIFOs for
operands and addresses have to be forwarded one step, respectively, in instruction 23
on bus 28, and in instructions 24-26 on buses 18-26. In instruction 23, the first complex
addition is triggered on bus 15 meaning that the the first operand, which has been stored
temporarily to the operand FIFO, must be transported from the operand FIFO to the
complex adder on bus 27. Correspondingly, the second temporarily stored operand
must be transported to the register r11 in the operand FIFO. This must be done since
the temporarily stored operands are always moved from the register r11 to the complex
adder. In instructions 24-26, respectively, the first, the second, and the third result are
stored back to the data memory on buses 16 and 17 and, therefore, the addresses have
to be moved forward in the address FIFO as illustrated in Fig. 19(a).

The kernel is implemented in the four instructions of the basic block 3. These instruc-

5. Optimized Assembler Implementation 61

tions implement the kernel operations presented in Fig. 18. Similarly as in the case of
the basic block 2, the address FIFO has to be further stepped forward in each of the
instructions since one result is stored back to the data memory and one new address is
generated in every clock cycle. Meanwhile, the operand FIFO has to step forward only
in every 4th clock cycle, i.e., this takes place in instruction 27 on bus 28. The end-
condition of the kernel, which is illustrated in Fig. 20, is evaluated in instructions 27,
29, and 30. When the execution of the program comes to the kernel for the first time
inside a computation stage, the conditional jump to instruction 27 on bus 31 is always
executed since the boolean register b1 has been set to zero in instruction 25 on bus
2. Since the jump latency is four cycles, this means that the execution of the program
comes again to instruction 27 after the instructions 28, 29, and 30 have been executed.
Then the end-condition is evaluated in instructions 29 and 30 by comparing the current
linear index with value 1013. If the current linear index is greater than 1013, b1 is set
to one in instruction 30 on bus 2 and the conditional jump in instruction 27 on bus 31
is no longer executed when the execution of the program moves on to basic block 4.

The last index of the kernel equals 1013 thus the kernel must be iterated 252 times in
a computation stage to get all the butterflies evaluated. Then it can be concluded by
examining Appendix E that the linear index equals 15 + 251 · 4 = 1019 in instruction
27 and 1021 in instruction 29 as the kernel is being executed for the last time in a
computation stage. Because the comparison takes place in instruction 29, index
1021− 4 = 1017 is the first one, which gives true as a result of GTU comparison
meaning that the jump condition is false and just the indices 1019, 1020, 1021, and
1022 are the last ones in the kernel to be transported to the address generator.

Basic block 4 operates as the epilogue of the inner loop. There are 13 instructions in
the basic block 4 which execute the operations that remain after the kernel has been
iterated 252 times. In this phase of the evaluation of the computation stage, one address
of an operand has to be still generated by triggering the address generator with the last
linear index(1023) in the instruction 31 on bus 4. In addition, the following operations

have to be executed inside the basic block 4:

• Load 3 operands from the data memory in instructions 31, 32, and 33.

• Perform 5 complex multiplications in instructions 31, 32, 34, 35, and 36.

• Generate 3 addresses of twiddle factor in instructions 31, 32, and 33.

• Load 3 factors from the data memory in instructions 31, 32, and 33.

5. Optimized Assembler Implementation 62

• Perform 12 complex additions in instructions 31-42.

• Store 13 results back to the data memory in instructions 31-43.

• Move the address FIFO 12 steps forward in instructions 31-42.

• Move the operand FIFO 3 steps forward in instructions 31, 35, and 39.

The last block of the code, basic block five, is the second code block that is keeping
the outer loop up. In the seven instructions of this block, the stage is incremented by
one and the end-condition of the computation of the 1024-point radix-4 DIT FFT is
evaluated as illustrated in Fig. 20.

5.2.3 Connectivity Optimization

There are 31 buses and 75 sockets in total in the IC of the processor as can be seen
from Tables 6 and 7. The numbers of buses and sockets are quite high, which can easily
increase the costs and the complexity of the IC. In addition, the length of the instruction
is increased which further increases the size of the program code. The larger code,
the larger instruction memory is required which increases both chip area and power
consumption. The key issue to avoid these problems is to optimize the connectivity of
the IC to a minimum. This ensures the fact that sockets can be implemented with the
aid of simple multiplexors and demultiplexors, which is decreasing the implementation
costs of the entire processor remarkably. On the other hand, the programmability of
the processor is always reduced by minimizing the connectivity. This is, however, not
a problem since the purpose of this assembler implementation is to be as optimal as
possible also in terms of processor cost. It is enough from the programmability’s point
of view that the processor is just capable of performing the assembly code presented
in Appendix F.

If the IC was fully connected, there would exist a total of 31 ·75 = 2325 connections in
the IC. Let us figure out what is the minimum number of connections for performing
the FFT application presented in Appendix F. The minimal connectivity can easily be
obtained by examining the assembly code. The sockets that must be connected to a bus
can be seen by going through all the data moves occurring on the bus. Then the sockets
can be seen by examining the socket fields of the data moves. A couple of examples of
specifying the connections of a couple of buses are shown in Table 10.

The connections, which are surrounded by curly brackets in the ’Sockets’-section of
Appendix G, are obtained by traversing through all the buses in the manner illustrated

5. Optimized Assembler Implementation 63

Table 10. Examples of specifying the connections.

Bus Moves Attached Sockets

m1 fu9.gtu_r → b0 [m1/-/fu9_r/b_i1] fu9_r, b_i1

m5 r15 → fu9.eq_t [m5/-/ri_o5/fu9_t]
r16 → fu4.add_t [m5/-/ri_o6/fu4_t]
r17 → fu4.add_t [m5/-/ri_o7/fu4_t]

ri_o5, fu9_t,

ri_o6, fu4_t,

ri_o7

in Table 10. The connectivity of the processor is, therefore, as minimal as possible.
The number of connections equals 119 which is only about 5% of the full connectivity.
This means that major savings in needed chip area will be obtained. It can be also
stated, that now the architecture of the core of the processor is fully characterized. The
core of the processor is illustrated in Appendices H and I. The FUs with their IC are
presented in Appendix H and RFs, respectively, in Appendix I. The structure of the
core can be examined by concatenating these two appendices. Next, it can be moved
on to the HW aspects of the processor.

5.3 Hardware Implementation

The HW-implementation of the processor is discussed briefly in this section. First, the
memories interacting with the core are discussed in Subsection 5.3.1. After that the
functionality of the core is described in Subsection 5.3.2. Lastly, the HDL-simulations
and the synthesis of the processor are described briefly in Subsection 5.3.3.

5.3.1 Memories

The block diagram of the processor is presented in Fig. 21. In this block diagram, the
arrows illustrate only the data flow between different blocks. In reality, the buses and
the sockets always exist between the FUs and the RFs when data transports are being
performed in the processor as illustrated in Appendices H and I. As can be seen from
the block diagram, there are two separate data memories and an instruction memory
(IMEM) in the processor.

The size of the dual-port data memory (DP-DMEM) is 2048 words and it is used
for lodging the input and the output data of the 1024-point FFT computation. The
1024 complex inputs are lodged in the beginning of this memory buffer from where
they are always read by FU6 during the first computation stage. The results of the

5. Optimized Assembler Implementation 64

 FU4
ADDER

 FU5
ADDER

 FU9
 CMP

 FU10
 CMP

SP-DMEM

FACTORS
SP-DMEM
ARBITER

 FU7
 LSU

DP-DMEM

IO-DATA

DP-DMEM
ARBITER

 FU6
 LSU

 FU8
 LSU

 FU2
 CMUL

 FU3
 CADD

 FU1
 AG

b0

RF

RF

IMEM CNTRL

RFs

b0 b1

RF

= CORE= PROCESSOR

RF

RF

RF

RF

RF

RF

= Standard FU
 from Library

Designed by the User

= SFU,

IO

= IO-Unit,
Provides external
access to the
processor

Figure 21. Block diagram of the processor.

butterfly evaluations are always stored by FU8 into the output-section which is locating
in the addresses 1024-2048 of the DP-DMEM. The other data memory is a single-
ported memory (SP-DMEM) which is used for lodging the 5120 twiddle factors. This
memory is connected to the FU7 which is used to load the factors into the complex
multiplier (FU2).

The IMEM contains the binary representations of the 51 instructions of the program
code presented in Appendix F. These 51 instruction bit vectors can be generated by
using the TTA assembler discussed in Chapter 2 on page 23. Each instruction consists
of 31 slots, i.e., there is a dedicated slot for each of the 31 buses. The size of the
instruction is 256 bits which can be seen by examining the statistic provided by the
TTA assembler. The instructions are fetched from the IMEM by the IFU of the control

5. Optimized Assembler Implementation 65

Table 11. Characteristics of the instruction and data memories of the processor.

Memory Width [bits] Address Space Size [bits] Usage

IMEM

[51 · 256 bits]
256 0-50 13056 instruction bit

vectors

DP-DMEM

[2048 · 32 bits]
32 0-2047 65536 input/output

data (addresses 0-

1023/1024-2047)
SP-DMEM

[5120 · 32 bits]
32 0-5119 163840 twiddle factors

unit and decoded by the IDU. Thus, the IDU decodes the slots of the instruction and
activates the correct sockets via which the data transports are going to take place. The
essential characteristics of the memories of the processor are shown in Table 11.

5.3.2 Core

The core of the processor is surrounded by the dashed rectangle in the block diagram
of Fig. 21. As can be seen from the block diagram, there are three SFUs and seven
standard FUs in the core. The HW-implementations of the SFUs were already dis-
cussed in Chapter 4. There is no need to know the internal HW-implementation of a
standard FU or a standard RF by the designer since the HDL-models of those can be
found from the HW block library. The HW-subsystem of the MOVE framework is also
capable of generating the HDL-models of the control unit and the IC as was described
in Chapter 2. Thus, there is no need to know the internal implementations of those
either, i.e., the designer must be familiar only with the external interface of the core
of the processor. These issues quicken the design process and ease the work of the
designer remarkably.

As can be seen from Fig. 21, FU4 has been connected to FU1. FU4 is the index adder
that is generating linear indices for FU1, the address generator. FU4 operates as an
incrementer, i.e., the previous result is always moved from the result register to the
operand register. FU4 is triggered by moving the value to be incremented, i.e., one,
from RF to the trigger register. FU1 is generating addresses of operands for FU6 that
is loading the operands from the DP-DMEM. As explained already before, FU1 has
always two outputs: one is an address of the input section of the DP-DMEM and the
other is, respectively, an address of the output section. The section (input/output) from
where the operands are loaded in different computation stages is selected by using the

5. Optimized Assembler Implementation 66

boolean register b0. Thus, b0 is controlling the mux that selects the correct address for
the FU6 in different computation stages. The boolean register b0 is always updated in
the beginning of a computation stage by the comparator-unit FU9. In the first stage,
zero, an address of the input-section need to be selected since the input permutation is
performed in this stage. In other stages(1, 2, 3, and 4), an address of the output-section
is selected since the in-place computation can be exploited. In addition, the selected
address must be always stored into the address FIFO which is implemented by using
the RFs.

The operands are moved from the FU6 either to the RF or to the complex multiplier
(FU2). Every fourth twiddle factor is one and there is no need to multiply the corre-
sponding operand with it. Thus, every fourth operand is moved to the operand FIFO,
which is also implemented by using the RFs, for waiting the complex addition to take
place. The twiddle factors are moved to the complex multiplier via FU7 which is load-
ing the factors from the SP-DMEM. The linear addresses of the factors are generated
by FU5 which is operating equally as the FU4, except that the FU5 increments always
its value by four. The results of complex multiplications are transported either via the
RF or straightly to the complex adder (FU3) as can be seen from Fig. 21. The second
and the third result of complex multiplications of a butterfly have to be always stored
temporarily into the RF before these results can be transported to the complex adder as
was already explained in Subsection 5.1.2.

The results of complex additions are stored back to the output-section of the DP-
DMEM by using the FU8. These results are stored just into same locations as from
where the input operands were read from by the FU6. Thus, the store addresses can
be read from the address FIFO to the LSU. The comparator-unit FU10 together with
the boolean register b1 are used for evaluating conditional jumps that occur in the
processor.

The external communication with the processor can be done by using the IO-unit which
has been marked with blue color in Fig. 21. E.g., external interrupts can be generated
and the processor halted with it. The essential registers of the control unit, such as the
PC, can also be initialized by the IO-unit. The changing of the contents of the data
memories can also be performed by using the IO-unit, i.e., the processor is halted and
the new contents are written to the data memories via the memory arbiters. Especially,
the writing of new data to the DP-DMEM would be a quite often executed operation in
a real DSP-system where the TTA processor might be, e.g., a slave processor. In this
case, new data would be written to the DP-DMEM always when the host-processor

5. Optimized Assembler Implementation 67

would like to perform a new 1024-point FFT transform.

5.3.3 HDL Simulation and Synthesis

To be able to verify the correct functionality of the 1024-point radix-4 DIT FFT pre-
sented in Appendix F, a VHDL-model of the processor was build for the simulation
and the synthesis by using the processor generator MOVEgen [9].

The VHDL-description of the core could be generated fairly easily as described in [9].
Only the VHDL-descriptions of the SFUs had to be manually implemented. Next,
the data and instruction memories, and the data memory arbiters were connected to
the core by exploiting the pre-designed components of MOVEgen. Then a simple,
pre-designed testbench was built surround the processor.

First, the register-transfer-level(RTL) simulation was run in the ModelSim’s HDL-
simulator [10]. The correct functionality of the processor could be verified as follows:

1. The contents of the buses was examined in different clock cycles and compared
with the structure and the known, correct operationality of the assembly code
presented in Appendix F.

2. The contents of the DP-DMEM’s output-section was compared with the known,
correct output contents of a HLL-implementation whose correct functionality
was verified by comparing to the reference implementation done with MATLAB.

After the RTL simulation, the processor was synthesized to the gate-level. The gate-
level simulation was run next for obtaining the utilizations of the gates. These were
needed in the power synthesis which was also done for getting information about its
power consumption. The results of the synthesis are discussed in the following chapter
where the performance of the FFT-on-TTA (FFTTA) processor is compared with a
couple of other FFT processors.

6. PERFORMANCE ANALYSIS

There exists a considerable number of commercial and academic FFT processors in
the market. Designers have developed processors from different bases meaning that
the characteristics of the processors vary widely. User can choose, e.g., a low-power
or a high-speed processor according to his own requirements. The implementation
techniques vary also; one can choose an ASIC or a programmable DSP. The best pos-
sible cost-performance characteristics can be obtained by using ASICs but on the other
hand, DSPs offer programmability and almost the same cost-performance characteris-
tics can be obtained by using them.

In this chapter, the essential characteristics of the FFTTA processor are summarized.
In addition, the FFTTA processor is compared against other commercial and academic
FFT processors. The characteristics are summarized in Section 6.1 and the comparison
is presented in Section 6.2.

6.1 Proposed FFT Processor

The essential characteristics of the proposed FFTTA processor are described in this
section. The computation speed of the processor is discussed briefly in Subsec-
tion 6.1.1. Chip area and power consumption are listed and discussed in Subsec-
tion 6.1.2.

6.1.1 Computation Speed

It can be seen from the synthesis results that the FFTTA processor can easily operate
with the clock frequency of 250 MHz. The critical path lies in the control unit and
it is 3.2 ns. Thus, 300 MHz is the absolute maximum clock frequency on which the
processor can run.

The performance of the 1024-point radix-4 DIT FFT computation in terms of elapsed
clock cycles can easily be calculated by examining the execution frequencies of the

6. Performance Analysis 69

Table 12. Performance of the 1024-point radix-4 DIT FFT in terms of elapsed clock cycles.

Basic Block Execution Frequency Number of Instructions Elapsed Cycles

BB0 1 10 10

BB1 5 2 10

BB2 5 15 75

BB3 252 ·5 = 1260 4 5040

BB4 5 13 65

BB5 5 7 35

TOTAL 5235

basic blocks from Appendix F. The clock cycles elapsed by a single basic block can be
obtained by multiplying the execution frequency of the basic block with the number of
instructions as shown in Table 12. The execution frequency of the kernel (basic block
3) is naturally the highest as it is being executed 252 times inside each computation
stage.

Now the total number of elapsed clock cycles, 5235, is also close to the theoretical
minimum, which can be obtained with this implementation technique. The theoreti-
cal minimum would be 5120 cycles since this implementation technique requires 5120
twiddle factors for computing the 1024-point transform. I.e., if one factor would be
loaded from the data memory in every cycle, the theoretical minimum would be ob-
tained. Now there is a small overhead of 115 cycles caused by the loops and initialisa-
tions.

Execution time elapsed in computing one 1024-point transform, t, can be calculated as
t = c/ f where c is the number of elapsed clock cycles and f the used clock frequency.
The execution time t equals 20.94 µs by placing c = 5235 and f = 250 MHz into this
formula.

6.1.2 Chip Area and Power Consumption

Chip areas and power consumptions of the different components of the FFTTA pro-
cessor can be seen from Table 13. Instruction memory is optimized by using the
dictionary-based code compression approach [14]. In this approach, all the unique
bit strings that occur in the code to be compressed are collected into a dictionary. The
bit strings of the original program are then replaced with indices pointing to the dictio-
nary. The size of the compressed instruction is dlog2 De bits where D is the number of

6. Performance Analysis 70

Table 13. Chip area and power consumption of the proposed FFTTA processor.

Component Area [kgates] Power [mW]

Core 39.8 48.5
Compressed IMEM [51 · 6 bits] 0.9 1.4
DP-DMEM [2048 · 32 bits] 102.4 27.0
SP-DMEM [5120 · 32 bits] 78.0 8.4

TOTAL 221.3 TOTAL 85.3

entries in the dictionary. [14]

The programmability of the FFTTA processor is already extremely low since its con-
nectivity has been optimized to a minimum. Therefore, the code compression can also
be implemented as optimally as possible. Since there are 51 instructions in the pro-
gram code, the size of the compressed instruction becomes only 6 bits by placing the
original 256-bit instruction into the dictionary. The dictionary can be implemented us-
ing a separate memory or standard cells. Using memory to implement the dictionary
maintains the programmability but results in poor compression ratio, r. Thus, as the
programmability is already low, it is more favorable to implement the dictionary using
standard cells as it provides a significantly better compression ratio. This results from
the fact that the synthesis tool can optimize the dictionary by removing the redundancy
occurring in the bit strings stored to the dictionary. The compression ratio can be cal-
culated as r = (IMEMc +CNT Rc)/(IMEMo +CNT Ro) where IMEMc is the area of
the compressed IMEM, CNT Rc the area of the control unit using code compression,
and IMEMo and CNT Ro the areas of the uncompressed IMEM and control unit. By
applying the previous formula, r equals only 10% for the IMEM of the FFTTA proces-
sor which can be considered as an extremely good result. The previous formula can
also be applied for the power’s compression ratio, p. Now the areas of the previous
formula are just replaced with powers consumed by the IMEM and the control unit.
Power’s compression ratio p equals also 10% indicating that the compressed IMEM
and the control unit together consume 90% less power than the uncompressed ones.

The data memory for the twiddle factors (SP-DMEM) could be optimized by removing
the redundancy of the factors. Namely, instead of 5N factors, only N/8 + 1 factors
are necessarily needed to compute the N-point radix-4 DIT FFT. I.e., in this case,
only 129 factors could be used instead of 5120 factors. This optimisation could be
implemented by using an address generator also for the factor-memory. Namely, a
correct factor for each of the 5120 clock cycles can always be generated by performing
simple modifications, such as multiplying with minus one or swapping the real and the

6. Performance Analysis 71

Table 14. Estimated chip area and power consumption of the proposed processor if also the

data memory for the factors (SP-DMEM) is optimized.

Component Area [kgates] Power [mW]

Core 39.8 48.5
Compressed IMEM [51 · 6 bits] 0.9 1.4
DP-DMEM [2048 · 32 bits] 102.4 27.0
Optimized SP-DMEM [129 · 32 bits] 25.7 2.8

TOTAL 168.8 TOTAL 79.7

imaginary parts, to the 129 factors, which are stored into the SP-DMEM. The address
of the factor, from which the needed factor can be generated, as well as the modification
to be performed to the factor can be computed in an SFU with the aid of the current
stage and the current linear index.

Estimated area and power consumption of the proposed FFTTA processor can be seen
from Table 14 in the case the factor memory would also be optimized in addition to the
IMEM. The estimates for SP-DMEM’s area and power have been obtained from the
synthesis results by proporting the area and power of the unoptimized SP-DMEM to
the size of the optimized SP-DMEM. The total area consumption should improve about
24% due to optimizing the SP-DMEM. The total power consumption is not reduced
too much since the relative share of power due to SP-DMEM is small. The essential
characteristics of the proposed FFTTA processor are summarized in Table 15.

Table 15. Summary of the proposed FFTTA processor.

FFT size (N) 1024
Elapsed clock cycles 5235

Word length 32
Algorithm radix-4
Process [µm] 0.11
Voltage [V] 1.5
Clock frequency [MHz] 250

1024-pt. exec. time [µs] 21

Area [kgates] 221.3

Power [mW] 85.3

Code compression ratio [%] 10

6. Performance Analysis 72

6.2 Performance Comparison

It is not easy to make a fair comparison between different FFT processors since
these processors are fabricated in different complementary metal oxide semiconductor
(CMOS) technologies and the sizes of the FFT also vary. Thus, some kind of normal-
izations are needed to be able to make comparisons between FFT processors that are
fabricated in different technologies.

Three normalizations can be used for comparisons as described in [15]. The nor-

malised area, An, can be used to evaluate the cost of silicon. It is given by

An =
A1024

(T/0.35µm)2 (20)

where A1024 is the area of the 1024-point FFT (mm2) and T the used CMOS technol-
ogy (µ). Since the layout of the proposed FFTTA processor with correct routings and
placement of cells has not been implemented, it is difficult to accurately estimate the
metric area of the FFTTA processor. Therefore, a more reliable index, the transistor
count C, is used in the comparison. One equivalent gate, 2-NAND, can be implemented
using four transistors. Thus, g 2-NAND gates require

C = 4g (21)

transistors in total.

The transistor count of the FFTTA processor was compared to the best found ASIC
implementation and a couple of other programmable DSPs. The results are shown in
Table 16. The transistor count of the FFTTA is about 48% higher than that of the best
found ASIC implementation. There is still quite a lot of overhead in the transistor
count of the FFTTA Processor since the SP-DMEM has not been optimized. The tran-
sistor count should improve about 24% by optimizing the SP-DMEM. Meanwhile, the
transistor count of the FFTTA processor is evidently better than the transistor counts
of the DSPs.

Energy efficiency, FFT/Energy, gives an adjusted number of 1024-point complex FFTs
that can be calculated for a fixed amount of energy. It is given by

FFT/Energy =
T

P1024 · t
(22)

where T is the technology (µ), P1024 the power consumed by the 1024-point FFT
(mW), and t the execution time of the 1024-point FFT (µs). The energy efficiency
of the FFTTA processor was compared with two good ASIC implementations and a

6. Performance Analysis 73

Table 16. Comparison of transistor counts.

Processor Transistor Count [ktransistors]

ASIC
Lin, Tsai & Chiueh [15],
Taiwan University

598

Programmable DSP
Imagine [16],
Stanford University

21 000

HiPAR-DSP4 [16],
Hannover University

1 200

FFTTA 885

couple of DSPs. Table 17 shows the results. The FFTTA processor can not com-
pete against the best found ASIC implementation, i.e., the processor of [17], in energy
efficiency since Spiffee’s power consumption is so low and the implementation tech-
nology sparse. However, the FFTTA processor is better than the processor of [15] in
energy efficiency since the power consumption of [15] is so much higher than that of
the FFTTA processor. Furthermore, the FFTTA processor is much better than other

Table 17. Comparison of energy efficiencies.

Processor Tech.

[µ]

Voltage

[V]

Power

[mW]

Exec. time

[µs]

Clock

rate

[MHz]

FFT/energy

[1015

J]

ASIC
Spiffee I [17],
Bevan Baas

0.6 1.1 9.5 330 16 191.39

Lin, Tsai & Chi-
ueh [15]

0.35 3.3 480 22.5 45.45 32.41

Programmable

DSP
Imagine [16] 0.15 1.5 9000 20.6 180 0.81

C40 [16],
Texas Instruments

0.7 5.0 4500 1298 60 0.12

HiPAR-DSP4 [16] 0.5 5000 222 66 0.45

FFTTA 0.11 1.5 85.3 20.9 250 61.58

6. Performance Analysis 74

Table 18. Comparison of energy-time products.

Processor Exec. time [µs] FFT/energy Energy x Time [J·s
1021]

ASIC
Lin, Tsai & Chiueh [15] 22.5 32.41 0.69

Spiffee I [17] 330 191.39 1.72

Programmable DSP
Imagine [16] 20.6 0.81 25.43

C40 [16] 1298 0.12 10816.67

HiPAR-DSP4 [16] 222 0.45 493.33

FFTTA 20.9 61.58 0.34

programmable DSPs in energy efficiency as can be seen from Table 17.

A metric considering both energy efficiency and speed performance is the energy-time

product, which is given by

Energy×Time =
t

FFT/Energy
(23)

The energy-time product of the FFTTA processor was compared equally as the energy
efficiency. The results of the comparison can be seen from Table 18. It can be seen
from Table 18 that the energy-time product of the FFTTA processor is evidently better
than the energy-time products of the ASIC implementations. The FFTTA processor is
better than the processor of [15] since the energy efficiency of the FFTTA processor
is much better than that of the processor in [15]. Naturally, one has to remember
that there exists inaccurary in the power consumption of the FFTTA processor since
it has been obtained as a result of the power synthesis. The power synthesis does not
take into account, e.g., the leakage currents of the memories which yields to a too
good estimate of the power consumption. Thus, in reality, the energy efficiency of the
FFTTA processor would be somewhat lower yielding to a higher energy-time product.
Meanwhile, the FFTTA processor beats the processor of [17] in energy-time product
due to its slow execution time.

7. CONCLUSIONS

In this thesis, FFT was implemented on TTA to evaluate TTA’s performance for per-
forming FFT. Firstly, background information of the TTA concept and the MOVE
framework, the semi-automated design environment for designing TTA processors,
was given. Secondly, the needed FFT theory was explained. In the first implementa-
tion phase, FFT was implemented using HLL code and the HLL compiler of the MOVE
framework. Since the performances of the HLL implementations were unfavourable,
FFT was implemented manually by hand using assembly code in the second imple-
mentation phase. Finally, based on the assembler implementation, the effective FFTTA
processor was proposed and compared with other commercial and academic FFT pro-
cessors to see TTA’s performance against other FFT processors.

The performances of the HLL implementations remained at the low level in terms
of elapsed clock cycles. This results from the fact that there are defects in the HLL
compiler of the MOVE framework. Above all, the support for software pipelining
would be needed to exploit the available ILP better. Naturally, the performance of
the assembler implementation can never be reached by using the HLL compiler but
considerably better performance, which would be sufficient for the needs of most of
the customers, could be obtained with the aid of software pipelining.

Meanwhile, the performance of the assembler implementation was found out to be ex-
tremely good and the utilisations of the essential resources, such as SFUs and LSUs,
were extremely high. The chip area was much better than that of the other DSPs and
it was even quite close to the chip areas of the ASIC implementations that are totally
unprogrammable. There still exists quite a lot of overhead in the chip area. Namely,
if the amount of the data memory lodging the twiddle factors would be optimized
from the current Nlog4N to the lowest possible N/8, the area would decrease consid-
erably, i.e., about 24%. Furthermore, the power consumption would decrease slightly
but not so much as the area since the SP-DMEM consumes much less power than the
DP-DMEM. The optimisation of the SP-DMEM can be implemented without a con-
siderable loss of computation speed meaning that the number of elapsed clock cycles

7. Conclusions 76

should not increase more than a couple of hundreds of clock cycles at the maximum.
The optimisation of the SP-DMEM was left as future work. Promising numbers were
also obtained for the energy efficiency and the energy-time product but one has to re-
member that there exists some inaccuracy in the power consumption of the FFTTA
processor which may yield to too optimistical results.

The original 256-bit instruction word could be reduced down to only six bits by using
the dictionary-based code compression. This proves that TTA’s long instruction word
does not cause a big problem if the code is compressed properly. Code compression
decreases also power consumption. In this case, the power consumption was reduced
as much as 34%.

The assembler implementation supports only the 1024-point transform at the moment.
However, certain other transform sizes could be supported quite easily. The support
for the sizes N = 4k could be implemented by using the same prologue and the kernel.
Only the number of iterations of the kernel and the code of the epilogue should be
adjusted according to the supported size N. Also the support for the transform sizes N

consisting of mixed radix-4 and radix-2 processing columns would be an easy exten-
sion. Only the complex adder should be extended to evaluate the radix-2 butterfly in
addition to the radix-4 butterfly. Furthermore, an additional loop evaluating the radix-2
butterflies should be added to the end of the current assembly code. The expandability
for several transform sizes is of great importance since several FFT sizes are usually
used in DSP applications.

Performance of TTA in performing FFT was found out to be extremely good when
the code was programmed using the assembler. The HLL implementations could not
compete against the assembler implementation in performance which was an expected
result. As a conclusion, based on the results obtained in this thesis work, it can be
stated that TTA is a promising programmable architecture candidate for implementing
DSP applications.

BIBLIOGRAPHY

[1] The MOVE Framework User’s Manual, Tampere University of Technology, 2004.

[2] H. Corporaal, Microprocessor Architectures: From VLIW to TTA. Chichester,
UK: John Wiley & Sons, 1997.

[3] H. Corporaal, “Transport Triggered Architectures: Design and Evaluation,” Ph.D.
dissertation, Delft Univ. Tech., Sept. 1995.

[4] R. P. Colwell, R. P. Nix, J. J. O’Connel, D. B. Papworth, and P. K. Rodman, “A
VLIW architecture for a trace scheduling compiler,” IEEE T. Comput., vol. 37,
no. 8, pp. 679–967, Aug. 1988.

[5] M. Niiranen, “Transport Triggered Architectures of Field Programmable Gate
Array,” Master’s thesis, Tampere Univ. Tech., Tampere, Finland, Oct. 2004.

[6] T. Rantanen, “Cost Estimation for Transport Triggered Architectures,” Master’s
thesis, Tampere Univ. Tech., Tampere, Finland, May 2004.

[7] IEEE Standard VHDL Language Reference Manual, IEEE Std. 1076-1993, 1994.

[8] J. Sertamo, “Processor Generator for Transport Triggered Architectures,” Mas-
ter’s thesis, Tampere Univ. Tech., Tampere, Finland, Sept. 2003.

[9] MOVEgen User’s Manual, Tampere University of Technology, 2004.

[10] ModelSim SE User’s Manual, Model Technology, 2003.

[11] J. Takala, “Real-Time Signal Processing Systems: Parallel Algorithms and Ar-
chitectures,” Ph.D. dissertation, Tampere Univ. Tech., 1999.

[12] J. Granata, M. Conner, and R. Tolimieri, “Recursive fast algorithms and the role
of the tensor product,” IEEE T. Signal Process., vol. 40, no. 12, pp. 2921–2930,
Dec. 1992.

Bibliography 78

[13] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing.
Englewood Cliffs, NJ, U.S.A.: Prentice Hall, 1975.

[14] J. Heikkinen, J. Takala, and H. Corporaal, “Dictionary-based program compres-
sion on transport triggered architectures,” in Proc. IEEE Int. Symp. on Circuits

and Systems, May 2005, pp. 1122–1125.

[15] Y.-T. Lin, P.-Y. Tsai, and T.-D. Chiueh, “Low-power variable-length fast Fourier
transform processor,” IEE Proc.-Comput. Digit. Tech., vol. 152, no. 4, pp. 505–
506, Jul. 2005.

[16] B. M. Baas, “Fast Fourier Transform Processor Information Page,”
http://nova.stanford.edu/ bbaas/fftinfo.html.

[17] B. M. Baas, “A low-power, high-performance, 1024-point FFT processor,” IEEE

Journal of Solid-State Circuits, vol. 34, no. 3, pp. 380–384, Mar. 1999.

Appendix A

SOURCE CODE OF CASE1

#include "r4fftditinplace.h"

extern const int Factors[];

/* Introductions of static functions. */

static

unsigned int swapBitPairs(unsigned int i);

static

unsigned int r4bfin_idx(unsigned int stage, unsigned int linidx);

/*Implementation of the algorithm begins.*/

void

r4fftditinplace (const int Input[], int Output[]) {

unsigned int idx0;

unsigned int idx1;

unsigned int idx2;

unsigned int idx3;

unsigned int stage;

unsigned int linidx;

short int re_num0, re_num1, re_num2, re_num3;

short int re_prod0, re_prod1, re_prod2, re_prod3;

short int re_sum0, re_sum1, re_sum2, re_sum3;

short int re_factor0, re_factor1, re_factor2, re_factor3;

short int im_num0, im_num1, im_num2, im_num3;

short int im_prod0, im_prod1, im_prod2, im_prod3;

short int im_sum0, im_sum1, im_sum2, im_sum3;

short int im_factor0, im_factor1, im_factor2, im_factor3;

unsigned int facto = 0;

/* Input permutation */

for (linidx = 0; linidx < FFT_POINTS; ++linidx) {

Output[linidx] = Input[swapBitPairs(linidx)];

}

80

/* Butterfly computations through stages of FFT begin.

* Loop Counters:

* stage -> counter for stages of fft

* linidx -> counter for butterfly input operands in a stage of fft

*/

for (stage = 0; stage < FFT_POINTS_LOG4; stage++) {

for (linidx = 0; linidx < (FFT_POINTS - 1); linidx += 4) {

idx0 = r4bfin_idx(stage, linidx);

idx1 = r4bfin_idx(stage, linidx + 1);

idx2 = r4bfin_idx(stage, linidx + 2);

idx3 = r4bfin_idx(stage, linidx + 3);

re_num0 = ((Output[idx0] >> 16) & 0x0000FFFF);

im_num0 = (Output[idx0] & 0x0000FFFF);

re_num1 = ((Output[idx1] >> 16) & 0x0000FFFF);

im_num1 = (Output[idx1] & 0x0000FFFF);

re_num2 = ((Output[idx2] >> 16) & 0x0000FFFF);

im_num2 = (Output[idx2] & 0x0000FFFF);

re_num3 = ((Output[idx3] >> 16) & 0x0000FFFF);

im_num3 = (Output[idx3] & 0x0000FFFF);

re_factor0 = ((Factors[facto] >> 16) & 0x0000FFFF);

im_factor0 = (Factors[facto] & 0x0000FFFF);

re_factor1 = ((Factors[facto+1] >> 16) & 0x0000FFFF);

im_factor1 = (Factors[facto+1] & 0x0000FFFF);

re_factor2 = ((Factors[facto+2] >> 16) & 0x0000FFFF);

im_factor2 = (Factors[facto+2] & 0x0000FFFF);

re_factor3 = ((Factors[facto+3] >> 16) & 0x0000FFFF);

im_factor3 = (Factors[facto+3] & 0x0000FFFF);

facto += 4;

/* Complex multiplications */

re_prod0 = ((re_num0 * re_factor0) >> 15) - ((im_num0 * im_factor0) >> 15);

im_prod0 = ((re_num0 * im_factor0) >> 15) + ((im_num0 * re_factor0) >> 15);

re_prod1 = ((re_num1 * re_factor1) >> 15) - ((im_num1 * im_factor1) >> 15);

im_prod1 = ((re_num1 * im_factor1) >> 15) + ((im_num1 * re_factor1) >> 15);

re_prod2 = ((re_num2 * re_factor2) >> 15) - ((im_num2 * im_factor2) >> 15);

im_prod2 = ((re_num2 * im_factor2) >> 15) + ((im_num2 * re_factor2) >> 15);

re_prod3 = ((re_num3 * re_factor3) >> 15) - ((im_num3 * im_factor3) >> 15);

im_prod3 = ((re_num3 * im_factor3) >> 15) + ((im_num3 * re_factor3) >> 15);

/* Complex additions */

re_sum0 = ((((re_prod0 + re_prod1) >> 1) + ((re_prod2 + re_prod3) >> 1)) >> 1);

im_sum0 = ((((im_prod0 + im_prod1) >> 1) + ((im_prod2 + im_prod3) >> 1)) >> 1);

re_sum1 = ((((re_prod0 + im_prod1) >> 1) - ((re_prod2 + im_prod3) >> 1)) >> 1);

im_sum1 = ((((im_prod0 - re_prod1) >> 1) - ((im_prod2 - re_prod3) >> 1)) >> 1);

re_sum2 = ((((re_prod0 - re_prod1) >> 1) + ((re_prod2 - re_prod3) >> 1)) >> 1);

im_sum2 = ((((im_prod0 - im_prod1) >> 1) + ((im_prod2 - im_prod3) >> 1)) >> 1);

re_sum3 = ((((re_prod0 - im_prod1) >> 1) - ((re_prod2 - im_prod3) >> 1)) >> 1);

im_sum3 = ((((im_prod0 + re_prod1) >> 1) - ((im_prod2 + re_prod3) >> 1)) >> 1);

/* Store the results of butterfly evaluation back to Output

* -array into the same index locations.

*/

Output[idx0] = (((int) re_sum0) << 16) | (((int) im_sum0) & 0x0000FFFF);

Output[idx1] = (((int) re_sum1) << 16) | (((int) im_sum1) & 0x0000FFFF);

Output[idx2] = (((int) re_sum2) << 16) | (((int) im_sum2) & 0x0000FFFF);

Output[idx3] = (((int) re_sum3) << 16) | (((int) im_sum3) & 0x0000FFFF);

}

}

}

81

/* Declarations of static functions */

/* This function permutes the lowermost 10 bits of linear i by swapping two bits’

* bit fields from the LSB- and MSB-parts of i in pairs. I.e., the lowermost two

* bits are swapped with the 9th and 10th bits etc.

*/

static

unsigned int swapBitPairs(unsigned int i) {

unsigned int bit_pair0, bit_pair1, bit_pair3, bit_pair4;

bit_pair0 = (i >> 8);

bit_pair1 = ((i >> 4) & 0x0000000C);

bit_pair3 = ((i << 4) & 0x000000C0);

bit_pair4 = ((i << 8) & 0x00000300);

return (bit_pair4 | bit_pair3 | (i & 0x00000030) | bit_pair1 | bit_pair0);

}

/* This function forms an input index of a butterfly by rotating the

* (2*stage+2) lowermost bits of the linidx two

* bits to the right; i.e., the output-array is accessed with the aid of this

* function in the butterfly computations.

*/

static

unsigned int r4bfin_idx(unsigned int stage, unsigned int linidx) {

unsigned int upper_part = 0; unsigned int rotated_part = 0;

unsigned int rotated_MSB = 0; unsigned int rotated_LSB_part = 0;

unsigned int idx = 0;

unsigned int rotated_part_width = (stage << 1) + 2;

if (stage > 0) {

upper_part = ((linidx >> rotated_part_width) << rotated_part_width);

rotated_part = ((linidx << (32 - rotated_part_width)) >>

(32 - rotated_part_width));

rotated_LSB_part = rotated_part >> 2;

rotated_MSB = ((rotated_part << 30) >> 30);

rotated_MSB = (rotated_MSB << (rotated_part_width - 2));

/* Concatenate different parts of the final index by orring bit by bit

and return the correct index.

*/

idx = (upper_part | rotated_MSB | rotated_LSB_part);

/* Assertions that can be used to verify that results are legal. */

#ifndef __move__

assert(idx <= 1023);

#endif

return idx;

} else {

#ifndef __move__

assert(linidx <= 1023);

#endif

return linidx;

}

}

Appendix B

SOURCE CODE OF CASE2

/*Implementation of the algorithm begins.*/

void

r4fftditinplace (const int Input[], int Output[]) {

unsigned int idx0, idx1, idx2, idx3;

unsigned int stage, linidx;

int prod0, prod1, prod2, prod3;

unsigned int facto = 0;

/* Input permutation */

for (linidx = 0; linidx < FFT_POINTS; ++linidx) {

Output[linidx] = Input[swapBitPairs(linidx)];

}

/* Butterfly computations through stages of FFT begin.

* Loop Counters:

* stage -> counter for stages of fft

* linidx -> counter for butterfly input operands in a stage of fft

*/

for (stage = 0; stage < FFT_POINTS_LOG4; stage++) {

for (linidx = 0; linidx < (FFT_POINTS - 1); linidx += 4) {

idx0 = r4bfin_idx(stage, linidx);

idx1 = r4bfin_idx(stage, linidx + 1);

idx2 = r4bfin_idx(stage, linidx + 2);

idx3 = r4bfin_idx(stage, linidx + 3);

/* Complex multiplications are performed with the aid of the cmul-SFU. */

prod0 = cmul(Output[idx0], Factors[facto]);

prod1 = cmul(Output[idx1], Factors[facto+1]);

prod2 = cmul(Output[idx2], Factors[facto+2]);

prod3 = cmul(Output[idx3], Factors[facto+3]);

facto += 4;

/* Complex summations are performed with the aid of the cadd-SFU. */

Output[idx0] = cadd(prod0,prod1,prod2,prod3,0);

Output[idx1] = cadd(prod0,prod1,prod2,prod3,1);

Output[idx2] = cadd(prod0,prod1,prod2,prod3,2);

Output[idx3] = cadd(prod0,prod1,prod2,prod3,3);

}

}

}

83

/*This function simulates the multiplication of two complex numbers.*/

inline int

r4mul(int in1, int in2) {

Complex num1, num2, prod;

Word(num1) = in1;

Word(num2) = in2;

/* If the value of multiplier, i.e. twiddle-factor, equals 1,

* multiplicand, i.e. a value of input table of FFT, can be returned.

*/

if (in2 == 0x7FFF0000) {

return in1;

} else {

Real(prod) = ((Real(num1) * Real(num2)) >> 15) - ((Imag(num1) * Imag(num2)) >> 15);

Imag(prod) = ((Real(num1) * Imag(num2)) >> 15) + ((Imag(num1) * Real(num2)) >> 15);

return Word(prod);

}

}

/* This function simulates the addition of four complex numbers in four

* sligthly different forms needed in the butterfly calculations of radix-4

* DIT FFT.

*/

int cadd(int in1, int in2, int in3, int in4, unsigned char format) {

Complex num1, num2, num3, num4, sum;

Word(num1) = in1;

Word(num2) = in2;

Word(num3) = in3;

Word(num4) = in4;

switch(format) {

case 0:

Real(sum) = ((((Real(num1) + Real(num2)) >> 1) + ((Real(num3) + Real(num4)) >> 1)) >> 1);

Imag(sum) = ((((Imag(num1) + Imag(num2)) >> 1) + ((Imag(num3) + Imag(num4)) >> 1)) >> 1);

break;

case 1:

Real(sum) = ((((Real(num1) + Imag(num2)) >> 1) - ((Real(num3) + Imag(num4)) >> 1)) >> 1);

Imag(sum) = ((((Imag(num1) - Real(num2)) >> 1) - ((Imag(num3) - Real(num4)) >> 1)) >> 1);

break;

case 2:

Real(sum) = ((((Real(num1) - Real(num2)) >> 1) + ((Real(num3) - Real(num4)) >> 1)) >> 1);

Imag(sum) = ((((Imag(num1) - Imag(num2)) >> 1) + ((Imag(num3) - Imag(num4)) >> 1)) >> 1);

break;

case 3:

Real(sum) = ((((Real(num1) - Imag(num2)) >> 1) - ((Real(num3) - Imag(num4)) >> 1)) >> 1);

Imag(sum) = ((((Imag(num1) + Real(num2)) >> 1) - ((Imag(num3) + Real(num4)) >> 1)) >> 1);

break;

}

return Word(sum);

}

Appendix C

SOURCE CODE OF CASE3

#include "r4fftditinplace.h"

#include "sfus.h"

extern const int Factors[];

/*Implementation of the algorithm begins.*/

void

r4fftditinplace (const int Input[], int Output[]) {

int oper0, oper1, oper2, oper3, oper4, oper5, oper6, oper7;

int *oper0in_addr = 0;

int *oper1in_addr = 0;

int *oper2in_addr = 0;

int *oper3in_addr = 0;

int *oper4in_addr = 0;

int *oper5in_addr = 0;

int *oper6in_addr = 0;

int *oper7in_addr = 0;

int *oper0out_addr = 0;

int *oper1out_addr = 0;

int *oper2out_addr = 0;

int *oper3out_addr = 0;

int *oper4out_addr = 0;

int *oper5out_addr = 0;

int *oper6out_addr = 0;

int *oper7out_addr = 0;

unsigned int stage = 0;

unsigned int linidx = 0;

int prod1, prod2, prod3, prod5, prod6, prod7;

unsigned int facto = 0;

85

/* Loop Counters:

* stage -> counter for stages of FFT

* linidx -> counter for butterfly input operands in a stage of FFT

*/

for (linidx = 0; linidx < (FFT_POINTS - 1); linidx += 8) {

ag(oper0in_addr,oper0out_addr,Input,Output,stage,linidx);

ag(oper1in_addr,oper1out_addr,Input,Output,stage,linidx+1);

ag(oper2in_addr,oper2out_addr,Input,Output,stage,linidx+2);

ag(oper3in_addr,oper3out_addr,Input,Output,stage,linidx+3);

ag(oper4in_addr,oper4out_addr,Input,Output,stage,linidx+4);

ag(oper5in_addr,oper5out_addr,Input,Output,stage,linidx+5);

ag(oper6in_addr,oper6out_addr,Input,Output,stage,linidx+6);

ag(oper7in_addr,oper7out_addr,Input,Output,stage,linidx+7);

oper0 = *oper0in_addr;

oper1 = *oper1in_addr;

oper2 = *oper2in_addr;

oper3 = *oper3in_addr;

oper4 = *oper4in_addr;

oper5 = *oper5in_addr;

oper6 = *oper6in_addr;

oper7 = *oper7in_addr;

/* Every 4:th twiddle-factor equals always one so that there

* is no need to utilize the cmul-SFU as computing the result

* of every 4:th complex multiplication.

*/

/* The rest of the complex multiplications are performed with

* the aid of the cmul-SFU.

*/

prod1 = cmul(oper1, Factors[facto+1]);

prod2 = cmul(oper2, Factors[facto+2]);

prod3 = cmul(oper3, Factors[facto+3]);

prod5 = cmul(oper5, Factors[facto+5]);

prod6 = cmul(oper6, Factors[facto+6]);

prod7 = cmul(oper7, Factors[facto+7]);

facto += 8;

/* Complex summations are performed with the aid of

* the cadd-SFU.

*/

*oper0out_addr = cadd(oper0,prod1,prod2,prod3,0);

*oper1out_addr = cadd(oper0,prod1,prod2,prod3,1);

*oper2out_addr = cadd(oper0,prod1,prod2,prod3,2);

*oper3out_addr = cadd(oper0,prod1,prod2,prod3,3);

*oper4out_addr = cadd(oper4,prod5,prod6,prod7,0);

*oper5out_addr = cadd(oper4,prod5,prod6,prod7,1);

*oper6out_addr = cadd(oper4,prod5,prod6,prod7,2);

*oper7out_addr = cadd(oper4,prod5,prod6,prod7,3);

}

86

for (stage = 1; stage < FFT_POINTS_LOG4; stage++) {

for (linidx = 0; linidx < (FFT_POINTS - 1); linidx += 8) {

ag(oper0in_addr,oper0out_addr,Input,Output,stage,linidx);

ag(oper1in_addr,oper1out_addr,Input,Output,stage,linidx+1);

ag(oper2in_addr,oper2out_addr,Input,Output,stage,linidx+2);

ag(oper3in_addr,oper3out_addr,Input,Output,stage,linidx+3);

ag(oper4in_addr,oper4out_addr,Input,Output,stage,linidx+4);

ag(oper5in_addr,oper5out_addr,Input,Output,stage,linidx+5);

ag(oper6in_addr,oper6out_addr,Input,Output,stage,linidx+6);

ag(oper7in_addr,oper7out_addr,Input,Output,stage,linidx+7);

oper0 = *oper0out_addr;

oper1 = *oper1out_addr;

oper2 = *oper2out_addr;

oper3 = *oper3out_addr;

oper4 = *oper4out_addr;

oper5 = *oper5out_addr;

oper6 = *oper6out_addr;

oper7 = *oper7out_addr;

prod1 = cmul(oper1, Factors[facto+1]);

prod2 = cmul(oper2, Factors[facto+2]);

prod3 = cmul(oper3, Factors[facto+3]);

prod5 = cmul(oper5, Factors[facto+5]);

prod6 = cmul(oper6, Factors[facto+6]);

prod7 = cmul(oper7, Factors[facto+7]);

facto += 8;

/* Complex summations are performed with the aid of

* the cadd-SFU.

*/

*oper0out_addr = cadd(oper0,prod1,prod2,prod3,0);

*oper1out_addr = cadd(oper0,prod1,prod2,prod3,1);

*oper2out_addr = cadd(oper0,prod1,prod2,prod3,2);

*oper3out_addr = cadd(oper0,prod1,prod2,prod3,3);

*oper4out_addr = cadd(oper4,prod5,prod6,prod7,0);

*oper5out_addr = cadd(oper4,prod5,prod6,prod7,1);

*oper6out_addr = cadd(oper4,prod5,prod6,prod7,2);

*oper7out_addr = cadd(oper4,prod5,prod6,prod7,3);

}

}

}

Appendix D

OPERATION SCHEDULING OF RADIX-4 DIT

BUTTERFLY

Appendix E

OPERATION SCHEDULING FOR DISCOVERING

THE KERNEL

89

Appendix F

TTA ASSEMBLY CODE

// 1K R4 DIT FFT

// ***

// TTA ASSEMBLY with correct registers when JUMP latency = 4 and LSU latency = 3

// ***

// Latencies of other FUs:

// addrgen 2

// cmul 3

// cadd 1

// add 1

// cmp 1

// ***

// Number of move buses = 31

// Number of instructions = 51

// ***

// Author: Risto Makinen <rmmakine@cs.tut.fi>

// Organization: Institute of Digital and Computer Systems, Tampere University of Technology (TUT), Finland

// Project: FlexDSP

// Date: 2005-18-08

// ***

// This assembly code has to be compiled with ttasm and proper machine configuration file.

// Then the generated binary code can be simulated with HW-simulator vsim. The processor model for vsim

// can be generated with the processor generator MOVEgen.

// ***

// BB0

// purpose : Initializations

// frequency : 1 (* 10 = 10)

// Fill registers with initial parameters:

// r15 stage

// r16 zero register

// r17 one register

// r18 two register

// r19 three register

// rv four register

// r20 base address of input buffer

// r21 base address of buffer for twiddle factors

// r22 base address of output buffer

..., ...,

..., ..., ..., ..., ..., ..., ..., ..., 0 -> r15 [m31/i1/ir_1/ri_i5]; // INSTRUCTION 0 ENDS

..., ...,

..., ..., ..., ..., ..., ..., ..., ..., 0 -> r16 [m31/i1/ir_1/ri_i6]; // INSTRUCTION 1 ENDS

..., ...,

..., ..., ..., ..., ..., ..., ..., ..., 1 -> r17 [m31/i1/ir_1/ri_i7]; // INSTRUCTION 2 ENDS

..., ...,

..., ..., ..., ..., ..., ..., ..., ..., 2 -> r18 [m31/i1/ir_1/ri_i8]; // INSTRUCTION 3 ENDS

..., ...,

..., ..., ..., ..., ..., ..., ..., ..., 3 -> r19 [m31/i1/ir_1/ri_i9]; // INSTRUCTION 4 ENDS

..., ...,

..., ..., ..., ..., ..., ..., ..., ..., 4 -> rv [m31/i1/ir_1/ri_i1]; // INSTRUCTION 5 ENDS

..., ...,

..., ..., ..., ..., ..., ..., ..., ..., 0 -> r20 [m31/i1/ir_1/ri_i10]; // INSTRUCTION 6 ENDS

..., ...,

..., ..., ..., ..., ..., ..., ..., ..., 0 -> r21 [m31/i1/ir_1/ri_i11]; // INSTRUCTION 7 ENDS

..., ...,

91

..., ..., ..., ..., ..., ..., ..., ..., 4096 -> r22 [m31/i1/ir_1/ri_i1]; // INSTRUCTION 8 ENDS

..., ..., r20 -> fu1.ag_o [m3/-/ri_o10/fu1_o], r22 -> fu1.ag_o1 [m4/-/ri_o1/fu1_o1], ..., ..., ..., ..., ...,

..., r21 -> fu5.add_o [m11/-/ri_o11/fu5_o], ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ..., ..., 1013 -> r21 [m31/i1/ir_1/ri_i11]; // INSTRUCTION 9 ENDS

// BB1

// purpose : Upkeeping of the outer loop

// frequency : 5 (* 2 = 10)

..., ..., r15 -> fu1.ag_o2 [m3/-/ri_o5/fu1_o2], r16 -> fu9.eq_o [m4/-/ri_o6/fu9_o],

r15 -> fu9.eq_t [m5/-/ri_o5/fu9_t], ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...; // INSTRUCTION 10 ENDS

fu9.eq_r -> b0 [m1/-/fu9_r/b_i1], ..., ..., r16 -> fu4.add_o [m4/-/ri_o6/fu4_o],

r16 -> fu4.add_t [m5/-/ri_o6/fu4_t], ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...; // INSTRUCTION 11 ENDS

// BB2

// purpose : Start the pipeline for FFT

// frequency : 5 (* 15 = 75)

// comment : Inner loop’s prologue

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...; // INSTRUCTION 12 ENDS

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...; // INSTRUCTION 13 ENDS

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r1 [m8/-/fu1_r1/ri_i2], ..., ..., ..., ...,

rv -> fu5.add_t [m13/-/ri_o1/fu5_t], ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ...; // INSTRUCTION 14 ENDS

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r2 [m8/-/fu1_r1/ri_i3], ..., ...,

fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o], fu5.add_r -> fu7.ld_t [m12/-/fu5_r/fu7_t],

rv -> fu5.add_t [m13/-/ri_o1/fu5_t], ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ...; // INSTRUCTION 15 ENDS

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r3 [m8/-/fu1_r1/ri_i4], ..., ...,

fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o], fu5.add_r -> fu7.ld_t [m12/-/fu5_r/fu7_t],

rv -> fu5.add_t [m13/-/ri_o1/fu5_t], ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ...; // INSTRUCTION 16 ENDS

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r4 [m8/-/fu1_r1/ri_i5],

fu6.ld_r -> r11 [m9/-/fu6_r/ri_i1], ..., fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o],

fu5.add_r -> fu7.ld_t [m12/-/fu5_r/fu7_t], rv -> fu5.add_t [m13/-/ri_o1/fu5_t], ..., ...,

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...; // INSTRUCTION 17 ENDS

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r5 [m8/-/fu1_r1/ri_i6],

fu6.ld_r -> fu2.cmul_o [m9/-/fu6_r/fu2_o], fu7.ld_r -> fu2.cmul_t [m10/-/fu7_r/fu2_t],

fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o], ..., rv -> fu5.add_t [m13/-/ri_o1/fu5_t], ..., ...,

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...; // INSTRUCTION 18 ENDS

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r6 [m8/-/fu1_r1/ri_i7],

fu6.ld_r -> fu2.cmul_o [m9/-/fu6_r/fu2_o], fu7.ld_r -> fu2.cmul_t [m10/-/fu7_r/fu2_t],

fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o], fu5.add_r -> fu7.ld_t [m12/-/fu5_r/fu7_t],

rv -> fu5.add_t [m13/-/ri_o1/fu5_t], ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ..., ...; // INSTRUCTION 19 ENDS

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r7 [m8/-/fu1_r1/ri_i8],

fu6.ld_r -> fu2.cmul_o [m9/-/fu6_r/fu2_o], fu7.ld_r -> fu2.cmul_t [m10/-/fu7_r/fu2_t],

fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o], fu5.add_r -> fu7.ld_t [m12/-/fu5_r/fu7_t],

rv -> fu5.add_t [m13/-/ri_o1/fu5_t], ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ..., ...; // INSTRUCTION 20 ENDS

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r8 [m8/-/fu1_r1/ri_i9],

fu6.ld_r -> r12 [m9/-/fu6_r/ri_i2], ..., fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o],

fu5.add_r -> fu7.ld_t [m12/-/fu5_r/fu7_t], rv -> fu5.add_t [m13/-/ri_o1/fu5_t],

fu2.cmul_r -> fu3.cadd_o1 [m14/-/fu2_r/fu3_o1], ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

92

..., ..., ..., ..., ..., ...; // INSTRUCTION 21 ENDS

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r9 [m8/-/fu1_r1/ri_i10],

fu6.ld_r -> fu2.cmul_o [m9/-/fu6_r/fu2_o], fu7.ld_r -> fu2.cmul_t [m10/-/fu7_r/fu2_t],

fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o], ..., rv -> fu5.add_t [m13/-/ri_o1/fu5_t],

fu2.cmul_r -> fu3.cadd_o2 [m14/-/fu2_r/fu3_o2], ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ..., ...; // INSTRUCTION 22 ENDS

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r10 [m8/-/fu1_r1/ri_i11],

fu6.ld_r -> fu2.cmul_o [m9/-/fu6_r/fu2_o], fu7.ld_r -> fu2.cmul_t [m10/-/fu7_r/fu2_t],

fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o], fu5.add_r -> fu7.ld_t [m12/-/fu5_r/fu7_t],

rv -> fu5.add_t [m13/-/ri_o1/fu5_t], fu2.cmul_r -> fu3.cadd_o3 [m14/-/fu2_r/fu3_o3],

r16 -> fu3.cadd_t [m15/-/ri_o6/fu3_t], ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

r11 -> fu3.cadd_o [m27/-/ri_o12/fu3_o], r12 -> r11 [m28/-/ri_o22/ri_i1], ..., ..., ...; // INSTRUCTION 23 ENDS

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r10 [m8/-/fu1_r1/ri_i11],

fu6.ld_r -> fu2.cmul_o [m9/-/fu6_r/fu2_o], fu7.ld_r -> fu2.cmul_t [m10/-/fu7_r/fu2_t],

fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o], fu5.add_r -> fu7.ld_t [m12/-/fu5_r/fu7_t],

rv -> fu5.add_t [m13/-/ri_o1/fu5_t], ..., r17 -> fu3.cadd_t [m15/-/ri_o7/fu3_t],

r1 -> fu8.st_o [m16/-/ri_o2/fu8_o], fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t],

r10 -> r9 [m18/-/ri_o11/ri_i10], r9 -> r8 [m19/-/ri_o10/ri_i9], r8 -> r7 [m20/-/ri_o92/ri_i8],

r7 -> r6 [m21/-/ri_o82/ri_i7], r6 -> r5 [m22/-/ri_o72/ri_i6], r5 -> r4 [m23/-/ri_o62/ri_i5],

r4 -> r3 [m24/-/ri_o5/ri_i42], r3 -> r2 [m25/-/ri_o4/ri_i32], r2 -> r1 [m26/-/ri_o3/ri_i22],

r16 -> fu10.gtu_o [m27/-/ri_o6/fu10_o], r16 -> fu10.gtu_t [m28/-/ri_o6/fu10_t],

..., ..., ...; // INSTRUCTION 24 ENDS

..., fu10.gtu_r -> b1 [m2/-/fu10_r/b_i1], fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o],

fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t], r17 -> fu4.add_t [m5/-/ri_o7/fu4_t],

b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t], !b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t],

fu1.ag_r1 -> r10 [m8/-/fu1_r1/ri_i11], fu6.ld_r -> r12 [m9/-/fu6_r/ri_i2], ...,

fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o], fu5.add_r -> fu7.ld_t [m12/-/fu5_r/fu7_t],

rv -> fu5.add_t [m13/-/ri_o1/fu5_t], fu2.cmul_r -> r13 [m14/-/fu2_r/ri_i3], r18 -> fu3.cadd_t [m15/-/ri_o8/fu3_t],

r1 -> fu8.st_o [m16/-/ri_o2/fu8_o], fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t], r10 -> r9 [m18/-/ri_o11/ri_i10],

r9 -> r8 [m19/-/ri_o10/ri_i9], r8 -> r7 [m20/-/ri_o92/ri_i8], r7 -> r6 [m21/-/ri_o82/ri_i7],

r6 -> r5 [m22/-/ri_o72/ri_i6], r5 -> r4 [m23/-/ri_o62/ri_i5], r4 -> r3 [m24/-/ri_o5/ri_i42],

r3 -> r2 [m25/-/ri_o4/ri_i32], r2 -> r1 [m26/-/ri_o3/ri_i22], ..., ..., ..., ..., ...; // INSTRUCTION 25 ENDS

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r10 [m8/-/fu1_r1/ri_i11],

fu6.ld_r -> fu2.cmul_o [m9/-/fu6_r/fu2_o], fu7.ld_r -> fu2.cmul_t [m10/-/fu7_r/fu2_t],

fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o], ..., rv -> fu5.add_t [m13/-/ri_o1/fu5_t],

fu2.cmul_r -> r14 [m14/-/fu2_r/ri_i4], r19 -> fu3.cadd_t [m15/-/ri_o9/fu3_t], r1 -> fu8.st_o [m16/-/ri_o2/fu8_o],

fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t], r10 -> r9 [m18/-/ri_o11/ri_i10], r9 -> r8 [m19/-/ri_o10/ri_i9],

r8 -> r7 [m20/-/ri_o92/ri_i8], r7 -> r6 [m21/-/ri_o82/ri_i7], r6 -> r5 [m22/-/ri_o72/ri_i6],

r5 -> r4 [m23/-/ri_o62/ri_i5], r4 -> r3 [m24/-/ri_o5/ri_i42], r3 -> r2 [m25/-/ri_o4/ri_i32],

r2 -> r1 [m26/-/ri_o3/ri_i22], ..., ..., ..., ..., ...; // INSTRUCTION 26 ENDS

93

// BB3

// purpose :

// frequency : 252 * 5 = 1260 (* 4 = 5040)

// comment : Inner loop’s kernel: jump latency = 4 and LSU latency = 3

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r10 [m8/-/fu1_r1/ri_i11],

fu6.ld_r -> fu2.cmul_o [m9/-/fu6_r/fu2_o], fu7.ld_r -> fu2.cmul_t [m10/-/fu7_r/fu2_t],

fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o], fu5.add_r -> fu7.ld_t [m12/-/fu5_r/fu7_t],

rv -> fu5.add_t [m13/-/ri_o1/fu5_t], fu2.cmul_r -> fu3.cadd_o3 [m14/-/fu2_r/fu3_o3],

r16 -> fu3.cadd_t [m15/-/ri_o6/fu3_t], r1 -> fu8.st_o [m16/-/ri_o2/fu8_o],

fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t], r10 -> r9 [m18/-/ri_o11/ri_i10],

r9 -> r8 [m19/-/ri_o10/ri_i9], r8 -> r7 [m20/-/ri_o92/ri_i8], r7 -> r6 [m21/-/ri_o82/ri_i7],

r6 -> r5 [m22/-/ri_o72/ri_i6], r5 -> r4 [m23/-/ri_o62/ri_i5], r4 -> r3 [m24/-/ri_o5/ri_i42],

r3 -> r2 [m25/-/ri_o4/ri_i32], r2 -> r1 [m26/-/ri_o3/ri_i22], r11 -> fu3.cadd_o [m27/-/ri_o12/fu3_o],

r12 -> r11 [m28/-/ri_o22/ri_i1], r13 -> fu3.cadd_o1 [m29/-/ri_o32/fu3_o1],

r14 -> fu3.cadd_o2 [m30/-/ri_o42/fu3_o2], !b1:27 -> jump [m31/i1/ir_1/pc]; // INSTRUCTION 27 ENDS

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r10 [m8/-/fu1_r1/ri_i11],

fu6.ld_r -> fu2.cmul_o [m9/-/fu6_r/fu2_o], fu7.ld_r -> fu2.cmul_t [m10/-/fu7_r/fu2_t],

fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o], fu5.add_r -> fu7.ld_t [m12/-/fu5_r/fu7_t],

rv -> fu5.add_t [m13/-/ri_o1/fu5_t], ..., r17 -> fu3.cadd_t [m15/-/ri_o7/fu3_t],

r1 -> fu8.st_o [m16/-/ri_o2/fu8_o], fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t],

r10 -> r9 [m18/-/ri_o11/ri_i10], r9 -> r8 [m19/-/ri_o10/ri_i9], r8 -> r7 [m20/-/ri_o92/ri_i8],

r7 -> r6 [m21/-/ri_o82/ri_i7], r6 -> r5 [m22/-/ri_o72/ri_i6], r5 -> r4 [m23/-/ri_o62/ri_i5],

r4 -> r3 [m24/-/ri_o5/ri_i42], r3 -> r2 [m25/-/ri_o4/ri_i32], r2 -> r1 [m26/-/ri_o3/ri_i22],

..., ..., ..., ..., ...; // INSTRUCTION 28 ENDS

..., ..., fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o], fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t],

r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r10 [m8/-/fu1_r1/ri_i11],

fu6.ld_r -> r12 [m9/-/fu6_r/ri_i2], ..., fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o],

fu5.add_r -> fu7.ld_t [m12/-/fu5_r/fu7_t], rv -> fu5.add_t [m13/-/ri_o1/fu5_t],

fu2.cmul_r -> r13 [m14/-/fu2_r/ri_i3], r18 -> fu3.cadd_t [m15/-/ri_o8/fu3_t],

r1 -> fu8.st_o [m16/-/ri_o2/fu8_o], fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t],

r10 -> r9 [m18/-/ri_o11/ri_i10], r9 -> r8 [m19/-/ri_o10/ri_i9], r8 -> r7 [m20/-/ri_o92/ri_i8],

r7 -> r6 [m21/-/ri_o82/ri_i7], r6 -> r5 [m22/-/ri_o72/ri_i6], r5 -> r4 [m23/-/ri_o62/ri_i5],

r4 -> r3 [m24/-/ri_o5/ri_i42], r3 -> r2 [m25/-/ri_o4/ri_i32], r2 -> r1 [m26/-/ri_o3/ri_i22],

fu4.add_r -> fu10.gtu_o [m27/-/fu4_r/fu10_o], r21 -> fu10.gtu_t [m28/-/ri_o112/fu10_t],

..., ..., ...; // INSTRUCTION 29 ENDS

..., fu10.gtu_r -> b1 [m2/-/fu10_r/b_i1], fu4.add_r -> fu4.add_o [m3/-/fu4_r/fu4_o],

fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t], r17 -> fu4.add_t [m5/-/ri_o7/fu4_t],

b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t], !b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t],

fu1.ag_r1 -> r10 [m8/-/fu1_r1/ri_i11], fu6.ld_r -> fu2.cmul_o [m9/-/fu6_r/fu2_o],

fu7.ld_r -> fu2.cmul_t [m10/-/fu7_r/fu2_t], fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o], ...,

rv -> fu5.add_t [m13/-/ri_o1/fu5_t], fu2.cmul_r -> r14 [m14/-/fu2_r/ri_i4],

r19 -> fu3.cadd_t [m15/-/ri_o9/fu3_t], r1 -> fu8.st_o [m16/-/ri_o2/fu8_o],

fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t], r10 -> r9 [m18/-/ri_o11/ri_i10],

r9 -> r8 [m19/-/ri_o10/ri_i9], r8 -> r7 [m20/-/ri_o92/ri_i8], r7 -> r6 [m21/-/ri_o82/ri_i7],

r6 -> r5 [m22/-/ri_o72/ri_i6], r5 -> r4 [m23/-/ri_o62/ri_i5], r4 -> r3 [m24/-/ri_o5/ri_i42],

r3 -> r2 [m25/-/ri_o4/ri_i32], r2 -> r1 [m26/-/ri_o3/ri_i22],

..., ..., ..., ..., ...; // INSTRUCTION 30 ENDS

// BB4

// purpose : Stop the pipeline for FFT

// frequency : 5 (* 13 = 65)

// comment : Inner loop’s epilogue

..., ..., ..., fu4.add_r -> fu1.ag_t [m4/-/fu4_r/fu1_t], ..., b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r10 [m8/-/fu1_r1/ri_i11],

fu6.ld_r -> fu2.cmul_o [m9/-/fu6_r/fu2_o], fu7.ld_r -> fu2.cmul_t [m10/-/fu7_r/fu2_t],

fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o], fu5.add_r -> fu7.ld_t [m12/-/fu5_r/fu7_t],

rv -> fu5.add_t [m13/-/ri_o1/fu5_t], fu2.cmul_r -> fu3.cadd_o3 [m14/-/fu2_r/fu3_o3],

r16 -> fu3.cadd_t [m15/-/ri_o6/fu3_t], r1 -> fu8.st_o [m16/-/ri_o2/fu8_o],

fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t], r10 -> r9 [m18/-/ri_o11/ri_i10],

r9 -> r8 [m19/-/ri_o10/ri_i9], r8 -> r7 [m20/-/ri_o92/ri_i8], r7 -> r6 [m21/-/ri_o82/ri_i7],

r6 -> r5 [m22/-/ri_o72/ri_i6], r5 -> r4 [m23/-/ri_o62/ri_i5], r4 -> r3 [m24/-/ri_o5/ri_i42],

r3 -> r2 [m25/-/ri_o4/ri_i32], r2 -> r1 [m26/-/ri_o3/ri_i22], r11 -> fu3.cadd_o [m27/-/ri_o12/fu3_o],

r12 -> r11 [m28/-/ri_o22/ri_i1], r13 -> fu3.cadd_o1 [m29/-/ri_o32/fu3_o1],

r14 -> fu3.cadd_o2 [m30/-/ri_o42/fu3_o2], ...; // INSTRUCTION 31 ENDS

..., ..., ..., ..., ..., b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r10 [m8/-/fu1_r1/ri_i11],

fu6.ld_r -> fu2.cmul_o [m9/-/fu6_r/fu2_o], fu7.ld_r -> fu2.cmul_t [m10/-/fu7_r/fu2_t],

fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o], fu5.add_r -> fu7.ld_t [m12/-/fu5_r/fu7_t],

rv -> fu5.add_t [m13/-/ri_o1/fu5_t], ..., r17 -> fu3.cadd_t [m15/-/ri_o7/fu3_t],

94

r1 -> fu8.st_o [m16/-/ri_o2/fu8_o], fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t],

r10 -> r9 [m18/-/ri_o11/ri_i10], r9 -> r8 [m19/-/ri_o10/ri_i9], r8 -> r7 [m20/-/ri_o92/ri_i8],

r7 -> r6 [m21/-/ri_o82/ri_i7], r6 -> r5 [m22/-/ri_o72/ri_i6], r5 -> r4 [m23/-/ri_o62/ri_i5],

r4 -> r3 [m24/-/ri_o5/ri_i42], r3 -> r2 [m25/-/ri_o4/ri_i32], r2 -> r1 [m26/-/ri_o3/ri_i22],

..., ..., ..., ..., ...; // INSTRUCTION 32 ENDS

..., ..., ..., ..., ..., b0:fu1.ag_r0 -> fu6.ld_t [m6/-/fu1_r0/fu6_t],

!b0:fu1.ag_r1 -> fu6.ld_t [m7/-/fu1_r1/fu6_t], fu1.ag_r1 -> r10 [m8/-/fu1_r1/ri_i11],

fu6.ld_r -> r12 [m9/-/fu6_r/ri_i2], ..., fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o],

fu5.add_r -> fu7.ld_t [m12/-/fu5_r/fu7_t], rv -> fu5.add_t [m13/-/ri_o1/fu5_t],

fu2.cmul_r -> r13 [m14/-/fu2_r/ri_i3], r18 -> fu3.cadd_t [m15/-/ri_o8/fu3_t],

r1 -> fu8.st_o [m16/-/ri_o2/fu8_o], fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t],

r10 -> r9 [m18/-/ri_o11/ri_i10], r9 -> r8 [m19/-/ri_o10/ri_i9], r8 -> r7 [m20/-/ri_o92/ri_i8],

r7 -> r6 [m21/-/ri_o82/ri_i7], r6 -> r5 [m22/-/ri_o72/ri_i6], r5 -> r4 [m23/-/ri_o62/ri_i5],

r4 -> r3 [m24/-/ri_o5/ri_i42], r3 -> r2 [m25/-/ri_o4/ri_i32], r2 -> r1 [m26/-/ri_o3/ri_i22],

..., ..., ..., ..., ...; // INSTRUCTION 33 ENDS

..., ..., ..., ..., ..., ..., ..., ..., fu6.ld_r -> fu2.cmul_o [m9/-/fu6_r/fu2_o],

fu7.ld_r -> fu2.cmul_t [m10/-/fu7_r/fu2_t], fu5.add_r -> fu5.add_o [m11/-/fu5_r/fu5_o], ..., ...,

fu2.cmul_r -> r14 [m14/-/fu2_r/ri_i4], r19 -> fu3.cadd_t [m15/-/ri_o9/fu3_t],

r1 -> fu8.st_o [m16/-/ri_o2/fu8_o], fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t],

r10 -> r9 [m18/-/ri_o11/ri_i10], r9 -> r8 [m19/-/ri_o10/ri_i9], r8 -> r7 [m20/-/ri_o92/ri_i8],

r7 -> r6 [m21/-/ri_o82/ri_i7], r6 -> r5 [m22/-/ri_o72/ri_i6], r5 -> r4 [m23/-/ri_o62/ri_i5],

r4 -> r3 [m24/-/ri_o5/ri_i42], r3 -> r2 [m25/-/ri_o4/ri_i32], r2 -> r1 [m26/-/ri_o3/ri_i22],

..., ..., ..., ..., ...; // INSTRUCTION 34 ENDS

..., ..., ..., ..., ..., ..., ..., ..., fu6.ld_r -> fu2.cmul_o [m9/-/fu6_r/fu2_o],

fu7.ld_r -> fu2.cmul_t [m10/-/fu7_r/fu2_t], ..., ..., ..., fu2.cmul_r -> fu3.cadd_o3 [m14/-/fu2_r/fu3_o3],

r16 -> fu3.cadd_t [m15/-/ri_o6/fu3_t], r1 -> fu8.st_o [m16/-/ri_o2/fu8_o],

fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t], r10 -> r9 [m18/-/ri_o11/ri_i10], r9 -> r8 [m19/-/ri_o10/ri_i9],

r8 -> r7 [m20/-/ri_o92/ri_i8], r7 -> r6 [m21/-/ri_o82/ri_i7], r6 -> r5 [m22/-/ri_o72/ri_i6],

r5 -> r4 [m23/-/ri_o62/ri_i5], r4 -> r3 [m24/-/ri_o5/ri_i42], r3 -> r2 [m25/-/ri_o4/ri_i32],

r2 -> r1 [m26/-/ri_o3/ri_i22], r11 -> fu3.cadd_o [m27/-/ri_o12/fu3_o], r12 -> r11 [m28/-/ri_o22/ri_i1],

r13 -> fu3.cadd_o1 [m29/-/ri_o32/fu3_o1], r14 -> fu3.cadd_o2 [m30/-/ri_o42/fu3_o2],

...; // INSTRUCTION 35 ENDS

..., ..., ..., ..., ..., ..., ..., ..., fu6.ld_r -> fu2.cmul_o [m9/-/fu6_r/fu2_o],

fu7.ld_r -> fu2.cmul_t [m10/-/fu7_r/fu2_t], ..., ..., ..., ..., r17 -> fu3.cadd_t [m15/-/ri_o7/fu3_t],

r1 -> fu8.st_o [m16/-/ri_o2/fu8_o], fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t],

r10 -> r9 [m18/-/ri_o11/ri_i10], r9 -> r8 [m19/-/ri_o10/ri_i9], r8 -> r7 [m20/-/ri_o92/ri_i8],

r7 -> r6 [m21/-/ri_o82/ri_i7], r6 -> r5 [m22/-/ri_o72/ri_i6], r5 -> r4 [m23/-/ri_o62/ri_i5],

r4 -> r3 [m24/-/ri_o5/ri_i42], r3 -> r2 [m25/-/ri_o4/ri_i32], r2 -> r1 [m26/-/ri_o3/ri_i22],

..., ..., ..., ..., ...; // INSTRUCTION 36 ENDS

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., fu2.cmul_r -> r13 [m14/-/fu2_r/ri_i3],

r18 -> fu3.cadd_t [m15/-/ri_o8/fu3_t], r1 -> fu8.st_o [m16/-/ri_o2/fu8_o],

fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t], r10 -> r9 [m18/-/ri_o11/ri_i10], r9 -> r8 [m19/-/ri_o10/ri_i9],

r8 -> r7 [m20/-/ri_o92/ri_i8], r7 -> r6 [m21/-/ri_o82/ri_i7], r6 -> r5 [m22/-/ri_o72/ri_i6],

r5 -> r4 [m23/-/ri_o62/ri_i5], r4 -> r3 [m24/-/ri_o5/ri_i42], r3 -> r2 [m25/-/ri_o4/ri_i32],

r2 -> r1 [m26/-/ri_o3/ri_i22], ..., ..., ..., ..., ...; // INSTRUCTION 37 ENDS

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., fu2.cmul_r -> r14 [m14/-/fu2_r/ri_i4],

r19 -> fu3.cadd_t [m15/-/ri_o9/fu3_t], r1 -> fu8.st_o [m16/-/ri_o2/fu8_o],

fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t], r10 -> r9 [m18/-/ri_o11/ri_i10], r9 -> r8 [m19/-/ri_o10/ri_i9],

r8 -> r7 [m20/-/ri_o92/ri_i8], r7 -> r6 [m21/-/ri_o82/ri_i7], r6 -> r5 [m22/-/ri_o72/ri_i6],

r5 -> r4 [m23/-/ri_o62/ri_i5], r4 -> r3 [m24/-/ri_o5/ri_i42], r3 -> r2 [m25/-/ri_o4/ri_i32],

r2 -> r1 [m26/-/ri_o3/ri_i22], ..., ..., ..., ..., ...; // INSTRUCTION 38 ENDS

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

fu2.cmul_r -> fu3.cadd_o3 [m14/-/fu2_r/fu3_o3], r16 -> fu3.cadd_t [m15/-/ri_o6/fu3_t],

r1 -> fu8.st_o [m16/-/ri_o2/fu8_o], fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t],

r10 -> r9 [m18/-/ri_o11/ri_i10], r9 -> r8 [m19/-/ri_o10/ri_i9], r8 -> r7 [m20/-/ri_o92/ri_i8],

r7 -> r6 [m21/-/ri_o82/ri_i7], r6 -> r5 [m22/-/ri_o72/ri_i6], r5 -> r4 [m23/-/ri_o62/ri_i5],

r4 -> r3 [m24/-/ri_o5/ri_i42], r3 -> r2 [m25/-/ri_o4/ri_i32], r2 -> r1 [m26/-/ri_o3/ri_i22],

r11 -> fu3.cadd_o [m27/-/ri_o12/fu3_o], r12 -> r11 [m28/-/ri_o22/ri_i1],

r13 -> fu3.cadd_o1 [m29/-/ri_o32/fu3_o1], r14 -> fu3.cadd_o2 [m30/-/ri_o42/fu3_o2],

...; // INSTRUCTION 39 ENDS

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

r17 -> fu3.cadd_t [m15/-/ri_o7/fu3_t], r1 -> fu8.st_o [m16/-/ri_o2/fu8_o],

fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t], r10 -> r9 [m18/-/ri_o11/ri_i10], r9 -> r8 [m19/-/ri_o10/ri_i9],

r8 -> r7 [m20/-/ri_o92/ri_i8], r7 -> r6 [m21/-/ri_o82/ri_i7], r6 -> r5 [m22/-/ri_o72/ri_i6],

r5 -> r4 [m23/-/ri_o62/ri_i5], r4 -> r3 [m24/-/ri_o5/ri_i42], r3 -> r2 [m25/-/ri_o4/ri_i32],

r2 -> r1 [m26/-/ri_o3/ri_i22], ..., ..., ..., ..., ...; // INSTRUCTION 40 ENDS

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., r18 -> fu3.cadd_t [m15/-/ri_o8/fu3_t],

r1 -> fu8.st_o [m16/-/ri_o2/fu8_o], fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t],

r10 -> r9 [m18/-/ri_o11/ri_i10], r9 -> r8 [m19/-/ri_o10/ri_i9], r8 -> r7 [m20/-/ri_o92/ri_i8],

r7 -> r6 [m21/-/ri_o82/ri_i7], r6 -> r5 [m22/-/ri_o72/ri_i6], r5 -> r4 [m23/-/ri_o62/ri_i5],

r4 -> r3 [m24/-/ri_o5/ri_i42], r3 -> r2 [m25/-/ri_o4/ri_i32], r2 -> r1 [m26/-/ri_o3/ri_i22],

..., ..., ..., ..., ...; // INSTRUCTION 41 ENDS

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., r19 -> fu3.cadd_t [m15/-/ri_o9/fu3_t],

r1 -> fu8.st_o [m16/-/ri_o2/fu8_o], fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t],

95

r10 -> r9 [m18/-/ri_o11/ri_i10], r9 -> r8 [m19/-/ri_o10/ri_i9], r8 -> r7 [m20/-/ri_o92/ri_i8],

r7 -> r6 [m21/-/ri_o82/ri_i7], r6 -> r5 [m22/-/ri_o72/ri_i6], r5 -> r4 [m23/-/ri_o62/ri_i5],

r4 -> r3 [m24/-/ri_o5/ri_i42], r3 -> r2 [m25/-/ri_o4/ri_i32], r2 -> r1 [m26/-/ri_o3/ri_i22],

..., ..., ..., ..., ...; // INSTRUCTION 42 ENDS

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., r1 -> fu8.st_o [m16/-/ri_o2/fu8_o],

fu3.cadd_r -> fu8.st_t [m17/-/fu3_r/fu8_t], ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ...; // INSTRUCTION 43 ENDS

// BB5

// purpose : Upkeeping of the outer loop

// frequency : 5 (* 7 = 35)

..., ..., r15 -> fu4.add_o [m3/-/ri_o5/fu4_o], ..., r17 -> fu4.add_t [m5/-/ri_o7/fu4_t], ...,

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ..., ..., ...; // INSTRUCTION 44 ENDS

..., ..., ..., fu4.add_r -> fu9.gtu_o [m4/-/fu4_r/fu9_o], rv -> fu9.gtu_t [m5/-/ri_o1/fu9_t],

..., ..., fu4.add_r -> r15 [m8/-/fu4_r/ri_i5], ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...; // INSTRUCTION 45 ENDS

fu9.gtu_r -> b0 [m1/-/fu9_r/b_i1], ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ...; // INSTRUCTION 46 ENDS

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., !b0:10 -> jump [m31/i1/ir_1/pc]; // INSTRUCTION 47 ENDS

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...; // INSTRUCTION 48 ENDS

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...; // INSTRUCTION 49 ENDS

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...,

..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...; // INSTRUCTION 50 ENDS

Appendix G

ARCHITECTURE DESCRIPTION FILE OF

PROCESSOR

/***

* File: mach.for.man.sched.conn.opt

* Description: A mach-file generated manually by hand

* on the basis of manual schedulation of 1k R4 DIT FFT.

* This mach-file provides optimal resources for the

* manually scheduled FFT. The connectivity is as minimal

* as possible in this processor configuration.

* Project: FlexDSP

* Author: Risto Makinen <rmmakine@cs.tut.fi>

**/

MoveBusses

{

m1 1, 0, unsigned;

m2 1, 0, unsigned;

m3 32, 0, signed;

m4 32, 0, signed;

m5 32, 0, signed;

m6 32, 0, signed;

m7 32, 0, signed;

m8 32, 0, signed;

m9 32, 0, signed;

m10 32, 0, signed;

m11 32, 0, signed;

m12 32, 0, signed;

m13 32, 0, signed;

m14 32, 0, signed;

m15 32, 0, signed;

m16 32, 0, signed;

m17 32, 0, signed;

m18 32, 0, signed;

m19 32, 0, signed;

m20 32, 0, signed;

m21 32, 0, signed;

m22 32, 0, signed;

m23 32, 0, signed;

m24 32, 0, signed;

m25 32, 0, signed;

m26 32, 0, signed;

m27 32, 0, signed;

m28 32, 0, signed;

m29 32, 0, signed;

m30 32, 0, signed;

m31 32, 0, signed;

}

97

Sockets

{

fu1_o input, {m3};

fu1_o1 input, {m4};

fu1_o2 input, {m3};

fu1_t input, {m4};

fu1_r0 output, {m6};

fu1_r1 output, {m7, m8};

fu2_o input, {m9};

fu2_t input, {m10};

fu2_r output, {m14};

fu3_o input, {m27};

fu3_o1 input, {m14, m29};

fu3_o2 input, {m14, m30};

fu3_o3 input, {m14};

fu3_t input, {m15};

fu3_r output, {m17};

fu4_o input, {m3, m4};

fu4_t input, {m5};

fu4_r output, {m3, m4, m8, m27};

fu5_o input, {m11};

fu5_t input, {m13};

fu5_r output, {m11, m12};

fu6_o input, {m3};

fu6_t input, {m6, m7};

fu6_r output, {m9};

fu7_o input, {m3};

fu7_t input, {m12};

fu7_r output, {m10};

fu8_o input, {m16};

fu8_t input, {m17};

fu8_r output, {m3};

fu9_o input, {m4};

fu9_t input, {m5};

fu9_r output, {m1};

fu10_o input, {m27};

fu10_t input, {m28};

fu10_r output, {m2};

io1_t input, {m31};

io1_r output, {m31};

ri_i1 input, {m9, m28, m31};

ri_i2 input, {m8, m9, m30};

ri_i22 input, {m26};

ri_i3 input, {m8, m14};

ri_i32 input, {m25};

ri_i4 input, {m8, m14};

ri_i42 input, {m24};

ri_i5 input, {m8, m23, m31};

ri_i6 input, {m8, m22, m31};

ri_i7 input, {m8, m21, m31};

ri_i8 input, {m8, m20, m31};

ri_i9 input, {m8, m19, m31};

ri_i10 input, {m8, m18, m31};

ri_i11 input, {m8, m31};

ri_o1 output, {m4, m5, m11, m13};

ri_o12 output, {m27, m28};

ri_o2 output, {m4, m16};

ri_o22 output, {m28};

ri_o3 output, {m26};

ri_o32 output, {m29};

ri_o4 output, {m25};

ri_o42 output, {m30};

ri_o5 output, {m3, m5, m24};

ri_o6 output, {m4, m5, m10, m15, m27, m28};

ri_o62 output, {m23};

ri_o7 output, {m5, m15};

ri_o72 output, {m22};

ri_o8 output, {m15};

ri_o82 output, {m21};

ri_o9 output, {m15};

ri_o92 output, {m20};

ri_o10 output, {m3, m19};

ri_o11 output, {m11, m18};

ri_o112 output, {m28};

98

b_i1 input, {m1, m2};

pc input, {m31};

ra_i input, {m31};

ra_o output, {m31};

trap input, {m31};

ir_1 output, {m31};

}

FunctionUnits

{

fu1 always, 2, { fu1_o, fu1_o1, fu1_o2 }, fu1_t, { fu1_r0, fu1_r1 }, {ag};

fu2 always, 3, { fu2_o }, fu2_t, { fu2_r }, {cmul};

fu3 always, 1, { fu3_o, fu3_o1, fu3_o2, fu3_o3 }, fu3_t, { fu3_r }, {cadd};

fu4 always, 1, { fu4_o }, fu4_t, { fu4_r }, {add, sub};

fu5 always, 1, { fu5_o }, fu5_t, { fu5_r }, {add, sub};

fu6 always, 3, { fu6_o }, fu6_t, { fu6_r }, {ld, st};

fu7 always, 3, { fu7_o }, fu7_t, { fu7_r }, {ld, st};

fu8 always, 3, { fu8_o }, fu8_t, { fu8_r }, {ld, st};

fu9 always, 1, { fu9_o }, fu9_t, { fu9_r }, {eq, gt, gtu};

fu10 always, 1, { fu10_o }, fu10_t, { fu10_r }, {eq, gt, gtu};

io1 always, 1, { }, io1_t, { io1_r }, {cntlrd, cntlwr};

}

LongImmediate

{

Registers:

i1 32, signed, ir_1;

Control:

i1 32:{31};

}

RegisterUnits

{

Integer 3, {ri_i1}, {ri_o1, ri_o12};

Integer 2, {ri_i2, ri_i22}, {ri_o2, ri_o22};

Integer 2, {ri_i3, ri_i32}, {ri_o3, ri_o32};

Integer 2, {ri_i4, ri_i42}, {ri_o4, ri_o42};

Integer 2, {ri_i5}, {ri_o5};

Integer 2, {ri_i6}, {ri_o6, ri_o62};

Integer 2, {ri_i7}, {ri_o7, ri_o72};

Integer 2, {ri_i8}, {ri_o8, ri_o82};

Integer 2, {ri_i9}, {ri_o9, ri_o92};

Integer 2, {ri_i10}, {ri_o10};

Integer 2, {ri_i11}, {ri_o11, ri_o112};

Boolean 2, {b_i1};

}

InstructionUnit

{

JumpLatency 4;

BoolLatency 1;

BoolExprSize 1;

ProgramCounter pc;

TrapRegister trap;

ReturnAddress ra_i, ra_o;

}

Appendix H

CORE: FUNCTION UNITS

100

Appendix I

CORE: REGISTER FILES

102

