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ABSTRACT
Program code size has become a critical design constraint
of embedded systems. Code compression is one of the
approaches to reduce the program code size; it results in
smaller memories and reduced cost of the chip. In this
paper, bitwise and dictionary modeling schemes for code
compression are evaluated on transport triggered architec-
ture processors, designed for four applications taken from
different application domains. Results of the bitwise mod-
eling scheme are promising, whereas the dictionary mod-
eling scheme needs further improvements to be profitable.
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1 Introduction

Very long instruction word (VLIW) architectures are
widely used in embedded systems, especially in digital sig-
nal processing (DSP) domain, due to their modularity and
scalability. VLIW is an instruction-set philosophy which
exploits the instruction level parallelism by executing sev-
eral operations in parallel in concurrently operating func-
tional units. The concurrently operating functional units
are controlled by a long instruction word that contains ded-
icated fields for each functional unit. Each field contains a
RISC-type operation that controls a single functional unit
in the architecture. Unfortunately, this kind of an instruc-
tion encoding approach usually leads to poor density [1],
and implies a need for large memories. In embedded sys-
tems, large memories are expensive and raise the power
consumption of the chip.

Straightforward way to increase the code density, and
thus decrease the size of the memories on the chip, is to
compress the instruction words of the program code and
store them into the memory in compressed form. During
execution, each instruction word is individually fetched,
decompressed and executed. Systems where code is inter-
preted from compressed form are called compressed-code
architectures [2]. Variety of compression methods have

been considered for VLIW architectures. In one of the
earliest approaches, no-operations (NOP) are eliminated
from the instructions [1]. A “mask” identifier preceding
each instruction specifies which fields are present in the
instruction word. In [3], NOPs in the instruction words
are avoided by assembling the original VLIW instructions
from a limited set of operation slot pairs, denoted as func-
tional unit instruction words (FIW), which control the as-
sociated functional units regardless of the remaining FIWs.
In [4], a dictionary-based compression method is applied
to VLIWs to improve the code density. Instructions are
separated to operand and opcode streams to find more re-
dundancy. Dictionary compression is then applied to both
streams by storing unique bit patterns into a dictionary and
replacing these bit patterns in the actual program with code-
words. Dictionary-based compression has also been ap-
plied in [5], where the non-time-critical part of the program
is compressed using superinstructions that correspond to
frequently used instruction patterns. Entropy encoding ex-
ploits the fact that some symbols are used more frequently
than others. Therefore, the shortest codes are allocated to
the most frequent symbols and vice versa. Entropy encod-
ing has been applied on VLIWs by means of arithmetic
coding, e.g., in [6], and Huffman encoding, e.g., in [7].

Transport triggered architecture (TTA) is a class of
statically programmed instruction-level parallel (ILP) ar-
chitectures that reminds VLIW architectures [8]. In the
TTA programming model, the program specifies only the
data transports (moves) to be performed by an interconnec-
tion network. Operations occur as a “side-effect”. Thus,
TTA has also a flavour of dataflow machines. A TTA pro-
cessor consists of a set of functional units and register files.
These structures are connected to an interconnection net-
work consisting of buses through input and output sockets
as illustrated in Fig. 1. The architecture is extremely flex-
ible and modular and it allows easy inclusion of custom
user-defined functional units.

TTA processors can be designed with MOVE frame-
work, a toolset that provides a semi-automatic design pro-
cess for designing application-specific instruction set pro-
cessors [9]. MOVE framework exploits the scalability, flex-
ibility and simplicity of the TTA in designing a proces-
sor for a given application. The design flow consists of
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Figure 1. TTA processor organization. FU: functional unit.
RF: register file. LSU: load-store unit. CNTRL: control
unit. DMEM: data memory. IMEM: program memory.
Dots represent connections between buses and sockets.

three main components: design space explorer, hardware
subsystem, and software subsystem. Processor configura-
tions yielding the best cost/performance ratio are searched
with the design space explorer. The design space explorer
evaluates several different TTA processor configurations in
terms of performance, area and power consumption. The
hardware subsystem is responsible for generating a struc-
tural hardware description (VHDL) of the chosen processor
configuration. Commercial tools can then be used to per-
form logic synthesis, placement, and routing to obtain the
layout of the processor. The software subsystem generates
the ILP code for the chosen processor configuration.

As VLIW processors, also TTA processors suffer
from poor code density. The poor code density is mostly
due to minimal instruction encoding, which leads to long
instruction words. The bits of the instruction word are sent
directly to the data path without being decoded first in a
decoder unit. The long instruction word contains dedicated
fields, called move slots, for each bus to define data trans-
ports on the buses. Each move slot contains three fields,
as illustrated in Fig. 2. The guard field specifies the guard
value that controls whether the data transport on the bus is
executed or not. The destination ID field contains the ad-
dress of the socket that reads data from the bus. The source
ID field contains the address of the socket that writes data
on the bus. In addition to move slots, instruction words may
contain dedicated long immediate fields to define long im-
mediate values, which are mainly used to specify jump ad-
dresses and large constant values. Another reason for poor
code density is that the hardware resources are typically tai-
lored for the highly parallel sections of the program. The
less parallel parts result in large number of null data trans-
ports, which increase the size of the program code.

In this paper, the performance of two different com-
pression methods is evaluated on TTA processors. Instruc-
tions of TTA processors, designed for four applications
taken from different application domains, are statistically
analyzed to approximate the compressibility of typical TTA
code. The first method, bitwise modeling, builds proba-
bility distributions of the individual bits of the instruction
words. These distributions are then stored as a model and
used to compress the instruction words with an entropy
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Figure 2. Structure of instruction word. G: Guard field. S:
Source ID field. D: Destination ID field. LI: Long imme-
diate field. (x): x-bit field.

coder. The second method, dictionary modeling, stores the
instruction words into a separate dictionary and replaces
the original code by indices pointing to the dictionary.

2 Bitwise Modeling

Bitwise modeling is based on context modeling, where a
preceding event is used to model the next one. In bitwise
modeling, this means that the next bit to occur is predicted
using the preceding bits. The next bit is said to occur within
the context of a set of preceding bits. The length of the
context is denoted as the order of the model. The proba-
bilities of zeroes and ones, p(0) and p(1), are determined
in the different bit positions of the instruction word. Since
p(1) = 1 − p(0), only p(0) is stored. Each probability is
stored using one byte. These probabilities are then used
to generate a model for predicting the next bit to occur.
The probabilities can be coded by Huffman encoding [10]
(combining several consecutive bits into one symbol) or
quasi-arithmetic coding [6].

Three orders of the bitwise model are considered. In
order 0 modeling, each position is handled independently.
The probabilities are independent: they have no context.
The model contains as many bytes as there are positions
in the instruction word. In order 1 modeling, each proba-
bility has one previously occurred bit as its context. The
context position is chosen optimally in such a way that 1)
the entropy is as small as possible and 2) several parts of
the instruction word can be decompressed simultaneously,
in parallel. The easiest way to achieve this is to keep the
positions relatively close to the position where the proba-
bilities are collected. For each position, the model contains
three bytes: 1) probability of zero when the previous po-
sition contains zero, p(0 | 0); 2) probability of zero when
the previous position contains one, p(0 | 1); and 3) the in-
dex of the affecting position. In order 2 modeling, each
probability has two previously occurred bits as its context.
The positions of the context bits are again chosen optimally.
For each position, the model contains 6 bytes: p(0 | 00),
p(0 | 01), p(0 | 10), p(0 | 11), and the indices of the two
positions. The model size increases exponentially when the
order grows. Due to this, order 2 was considered to be the
highest order worth evaluating.

When the probabilities of each position are collected,
the entropy can be calculated for each individual bit
position. Entropy, denoting the average amount of in-
formation per symbol s over the whole alphabet, is given by



slot 0 slot 1 slot 2 long immediate

0,0

0,2

0,4

0,6

0,8

1,0

Order 0 Order 1 Order 2

Figure 3. Optimal compression ratios of individual bits of an instruction word of a 3-bus TTA processor designed for 8× 8 2-D
DCT application

H =
∑

s

−p(s)log2(p(s)) (1)

where p(s) is the probability of a symbol. If the symbols
appear independently and with assumed probabilities, en-
tropy can be considered as lower bound of compression,
i.e., optimal compression ratio. This can be achieved only
by an optimal entropy coder. However, arithmetic coding
and Huffman encoding perform well enough so that the en-
tropy can be considered as a good estimation of the com-
pression ratio.

Entropy, given by equation 1, can be applied to
calculate the entropies, i.e., compression ratios, of each bit
in the instruction word. In order 0 modeling, the entropy
of a bit is given by

Hbit = −p(0)log2(p(0)) − p(1)log2[p(1)] (2)

where p(0) is the probability of a bit being zero and p(1)
the probability of a bit being one. In orders 1 and 2 the
context needs to be taken into account. The entropy for the
orders 1 and 2 is given by

Hbit =
∑

i

ci[−pi(0)log2(pi(0))

−pi(1)log2(pi(1))] i =
{

0..1 order 1
0..3 order 2

(3)

where ci is the probability of the context, and p(0) and p(1)
are the probabilities of bit being zero or one. For order 1
there are two possible contexts, the preceding bit being ’0’
or ’1’. Correspondingly, for order 2 there are four possible
contexts, preceding two bits being ’00’, ’01’, ’10’, or ’11’.

Figure 3 shows optimal compression ratios of the bit
positions of an instruction word of a TTA processor de-
signed for discrete cosine transform (DCT) application.
Some of the bits have the same value in each instruction
word and are thus compressed down to 0 percent, mean-
ing that they can be removed. Such bits may be, for ex-
ample, the most significant bits of long immediate fields.

The width of the long immediate field is restricted to 32
bits in the current version of the MOVE framework toolset.
Because the DCT application requires only 16 bit long im-
mediates, 16 leftmost bits of the long immediate field are
unused and they can be removed.

The bitwise modeling was applied to the instructions
of TTA processors designed with the MOVE framework
for four benchmark applications from DSP and multimedia
domains. Three configurations, a high-performance config-
uration, a cost-efficient configuration, and a configuration
being a compromise between cost and performance were
chosen for each benchmark. The DSP benchmarks real-
ized two versions of the discrete cosine transform (DCT),
two-dimensional (2-D) 8 × 8 DCT and 1-D 32-point DCT,
and Viterbi decoding. The multimedia application, taken
from the MediaBench benchmark set [11], implemented
MPEG2 decompression. The applications and their code
statistics are illustrated in Table 1. Target processors are
classified according to the number of buses in the configu-
ration. Other resources scale correspondingly.

Table 1. Code statistics of benchmark applications
Application Buses Instr.

width
Instr.
count

Code
size

[bits] [bytes]
3 88 208 2288

8 × 8 2-D DCT 8 184 138 3174
13 272 127 4318
4 96 1038 12456

32-point DCT 8 160 502 10040
10 200 477 11925
3 96 385 4620

Viterbi decoding 6 152 262 4978
9 208 253 6578
5 128 8550 136800

MPEG2 decoding 6 152 8018 152342
8 184 7652 175996



Table 2. Results of order 0 bitwise modeling
Application Buses Model size Compr. instr. width Compr. code size + model Compr. ratio

[bytes] [bits] [bytes] [%]
3 67 40.0 1106 48.3

8 × 8 2-D DCT 8 142 76.4 1460 46.0
13 189 88.2 1590 36.8
4 92 65.9 8641 69.4

32-point DCT 8 149 97.3 6255 62.3
10 179 116.0 7090 59.5
3 88 43.8 2197 47.5

Viterbi decoding 6 146 77.4 2676 53.8
9 195 93.2 3143 47.8
5 127 56.2 60159 44.0

MPEG2 decoding 6 134 64.7 64964 42.6
8 184 73.9 70825 40.2

Table 3. Results of order 1 bitwise modeling
Application Buses Model size Compr. instr. width Compr. code size + model Compr. ratio

[bytes] [bits] [bytes] [%]
3 192 28.3 928 40.5

8 × 8 2-D DCT 8 401 41.2 1113 35.1
13 526 42.6 1202 27.8
4 205 33.6 4567 36.7

32-point DCT 8 373 59.6 4111 40.9
10 444 61.1 4089 34.3
3 222 31.9 1758 38.0

Viterbi decoding 6 393 50.7 2054 41.3
9 528 51.0 2141 32.5
5 339 34.1 36761 26.9

MPEG2 decoding 6 352 37.8 38241 25.1
8 508 42.2 40848 23.2

Table 2 illustrates the results of the bitwise modeling
of order 0. Tables 3 and 4 illustrate the results of order 1
and order 2, respectively. The tables depict the size of the
probability distribution model, the width of the compressed
instruction, the total code size (including the size of the
model), and the compression ratio. The width of the com-
pressed instruction word is an average of all the instruction
word widths of the compressed code. The compression ra-
tio is the theoretical limit when using the bitwise modeling
scheme. It can be achieved only by an optimal entropy
coder.

Already the order 0 model shows a significant reduc-
tion in code size. On average, a compression ratio of 49.9
percent is obtained. As higher orders are used, the com-
pression ratio decreases even further, though the improve-
ment achieved with the order 2 compared to the order 1
is negligible. With the order 1 modeling, the compression
ratio is on average 33.5 percent and with the order 2 model-
ing 33.0 percent. The average width of the compressed in-
struction shortens as higher modeling orders are used, but
on the other hand, the size of the model increases. With

lower orders, order 0 and order 1, the size of model does
not have a big effect on the total code size, but with the
order 2, the size of the model has a notable effect on the
total code size in most of the applications. Because of this,
the compression ratio decreases only slightly when the or-
der 2 is used instead of the order 1. Taking into account
the increased complexity of the decompression hardware
with higher modeling orders, order 1 seems to be the most
reasonable modeling order to be used.

The size of the processor configuration has a notable
effect on the results. Bigger processor configurations re-
sult in bigger models, but on the other hand, smaller com-
pression ratio. Bigger processor configurations have more
buses, i.e., there are more move slots that increase the width
of the instruction. As there are more bits in the instruc-
tion word, the size of the model increases. However, the
compiler is rarely capable of fully utilizing all the buses
of the architecture. This results in large number of empty
data transports in the program code, which are optimized
away with the bitwise modeling approach, resulting in bet-
ter compression ratio. Although the compression ratios are



Table 4. Results of order 2 bitwise modeling
Application Buses Model size Compr. instr. width Compr. code size + model Compr. ratio

[bytes] [bits] [bytes] [%]
3 360 23.9 982 42.9

8 × 8 2-D DCT 8 726 30.7 1255 39.5
13 907 29.3 1373 31.8
4 397 28.9 4142 33.3

32-point DCT 8 715 51.3 3935 39.2
10 684 51.1 3912 32.8
3 414 26.6 1695 36.7

Viterbi decoding 6 738 42.1 2117 42.5
9 945 39.9 2208 33.6
5 672 28.6 31231 22.8

MPEG2 decoding 6 700 31.6 32332 21.2
8 1012 35.0 34522 19.6

Table 5. Results of dictionary modeling of whole instructions
Application Buses Dict.

entries
Dict. size
[bytes]

Compr. instr.
width [bits]

Compr. code size +
dict. [bytes]

Compr. ratio
[%]

3 189 2079 8 2287 100.0
8 × 8 2-D DCT 8 120 2760 7 2881 90.8

13 101 3434 7 3545 82.1
4 900 10800 10 12098 97.1

32-point DCT 8 452 9040 9 9605 95.7
10 434 10850 9 11387 95.5
3 345 4140 9 4573 99.0

Viterbi decoding 6 224 4256 8 4518 90.8
9 205 5330 8 5583 84.9
5 4353 69648 13 83542 61.1

MPEG2 decoding 6 4005 76095 12 88122 57.8
8 3630 83490 12 94968 54.0

quite good in this approach, the instruction fetch and de-
coding become more complicated. Compressed instruction
become variable-width, which complicates the instruction
fetching. As the instructions are compressed, they need to
be decompressed before decoding. For decompression, a
state machine is needed to find the codewords from the in-
coming bit stream as the codewords are of variable width.

3 Dictionary Modeling

In dictionary modeling, all the unique bit strings that oc-
cur in the program to be compressed are collected into
a dictionary. Each bit string in the original program is
then replaced with an index pointing to the dictionary [12].
The indices could be stored with variable-width codewords
(such as Huffman codes) but, for simplicity, only constant
length codewords were used in this paper. The indices be-
come �log2|D|� bits wide, where |D| is the number of en-
tries in the dictionary. During program execution fixed-
width codewords simplify instruction fetching, decompres-

sion, and decoding. Fixed-width indices are fetched from
the memory. The indices are then used to fetch the origi-
nal instructions from the dictionary to be decoded. In ad-
dition to reduced code size, dictionary modeling approach
may also reduce the power consumption. As the indices
are smaller than original instructions, fewer bits are fetched
from the memory. Thus, the memory I/O bandwidth be-
tween the external program memory and the processor is
reduced, resulting in smaller power consumption.

Dictionary modeling was evaluated with the same set
of benchmarks and processor configurations as the bitwise
modeling scheme. In the evaluations, the program codes
were searched for unique instruction words, that were all
stored into a dictionary. The instruction words in the pro-
gram code were then replaced with codewords that point
to the dictionary. The results are shown in Table 5, which
depicts the number of entries in the dictionary, the size of
the dictionary, width of the codewords, total code size (in-
cluding the dictionary), and the compression ratio.

The results indicate that the achieved compression ra-
tios are poor, except for the MPEG2 decoding application



that has compression ratios between 54.0 and 61.1 percent
depending on processor configuration. The poor results of
this method were quite expected, because TTA instructions
are fairly long and they are composed of several move slots
that all specify independent data transports. As there are
several sources and destinations for each data transport, the
probability that two or more instructions would specify ex-
actly the same data transports in exactly the same move
slots is fairly small. The most probable case for finding
identical instructions is when all move slots specify empty
data transports. Actually, most of the repeated instructions
found in the benchmarks were this kind of totally empty
instructions. Still, only for MPEG2 decoding application
there were enough of these totally empty instructions so
that a good compression ratio was achieved. MPEG2 de-
coding application was the biggest and most complex of
the benchmark applications. Due to this, the compiler was
incapable of scheduling data transports efficiently on the
available transport buses, which resulted in large number
of totally empty instructions. These instructions were opti-
mized away with the dictionary modeling method.

The experiments demonstrated that entire TTA in-
structions are not suitable to be considered as elements for
dictionary compression, because the probability of finding
totally identical instructions is small. A better alternative
would be to divide TTA instructions into smaller fields and
then search for unique bit patterns inside these fields. The
division could be made, e.g., according to move slot and
long immediate field boundaries. As the bit patterns to be
compared would be smaller, the probability of finding iden-
tical bit patterns would increase and, most probably, result
in better compression ratio.

4 Conclusions

In this paper, two different compression methods, bit-
wise modeling and dictionary modeling, were evaluated
on transport triggered architectures. The bitwise model-
ing scheme was found to be fairly efficient to improve the
code density. The best results were achieved with order
2 modeling, but due to the complexity of the higher order
models, it was concluded that the order 1 modeling would
be preferable, as it achieves almost as good results as the
order 2 modeling with less complex decompression hard-
ware. Dictionary modeling approach was found to be in-
efficient when applied to whole TTA instructions. Only
MPEG2 decoding application produced reasonable results.
Better results can be obtained by splitting the instructions
into smaller parts, e.g., according to move slot and long im-
mediate field boundaries. This approach will be evaluated
in the future.
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