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Abstract. In this paper, a methodology for estimating area, energy consumption
and execution time of an application executed on a specified processor is pro-
posed. In addition, a design exploration process to find suitable processor archi-
tectures for a specific application is proposed. Cost and performance estimation is
an important part of the exploration process. The actual cost estimation is based
on predefined characterizations of cost and performance of resources stored in a
database. The results show that the method is quick and its accuracy is sufficient
for design space exploration.

1 Introduction

In general, tailoring a processor architecture for a specific application or set of applica-
tions under certain implementation constraints calls for analyzing several architectural
alternatives. This analysis requires several tasks to be performed: program code for the
application has to be generated for each target architecture, performance of the code on
each architecture has to be evaluated, and implementation costs have to be analyzed. A
huge effort is required to perform all these tasks manually.

This problem can be alleviated with tool-assisted exploration of a vast architecture
design space and a high-level language compiler that is retargetable at run time. In ad-
dition, the estimates of the cost of running an application on its target architecture, e.g.,
execution time, area, and energy, should be obtained. If hundreds of different architec-
ture alternatives are to be analyzed, it is essential that the estimations can be obtained
quickly.

In this paper, a methodology for estimating area, energy consumption, and execu-
tion time of an application executed on a processor is proposed. In addition, a design
exploration process to find suitable processor architectures for a specific task is pro-
posed. The actual cost estimation is based on predefined resource characteristics, which
are stored into a database used by the exploration process. The estimates obtained with
the proposed methodology are compared to reference values obtained from commer-
cial simulation tools. The results show that the accuracy of our method is sufficient for
the exploration process and the estimation is extremely quick compared to traditional
methods.
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Fig. 1. TTA processor organization. FU: Function unit. RF: Register file. LSU: Load-store unit.
CNTRL: Control unit. DMEM: Data memory. IMEM: Instruction memory. Dots represent con-
nections between buses and ports of function units.

2 Related Work

The work presented in this paper is based on the Move framework, a design environ-
ment developed at Delft University of Technology, Delft, the Netherlands. The frame-
work consists of a set of tools for designing application-specific programmable proces-
sors [1]; it includes a retargetable high-level language (HLL) compiler, a cycle-accurate
simulator and a processor generator. The framework provides also tool-assisted archi-
tecture exploration; the designer defines the maximum set of processor resources and
the explorer estimates the cost of executing the application on different architectures.
The processor architectures supported by the framework are all based on the same tem-
plate. A target architecture is an instantiation of this template with a set of parameters.
The tools of the framework can exploit the specific features of each instantiation.

The architecture template of the Move framework is based on transport triggering
paradigm [2] —hence the name transport triggered architecture (TTA)— where an in-
struction specifies only the data transports to be performed by the interconnection net-
work. The execution of an operation is a side effect of an operand transport to a specific
operand register of a function unit. TTA’s, therefore, remind the data-flow computation
paradigm, but the availability of operands is determined statically.

In a TTA processor, only one type of operation is supported: the move operation,
which performs a data transport from a source to destination. A TTA processor, as
illustrated in Fig. 1, consists of a set of function units (FU) and register files (RF)
containing general-purpose registers, a control unit, and an interconnection network
consisting of buses. Data memory accesses are performed with the aid of a load-store
unit, which is a normal function unit from the architecture point of view. The function
units and register files can have different number of input and output ports, which are
connected to one or more buses.

Each function unit begins to execute a new operation when an operand is moved into
a trigger operand register, shown in the block diagram in Fig. 2. All the other operands
have to be transferred into the operand registers in the same or earlier cycles. A function
unit can produce one or more results. If the function unit supports several operations,
the actual operation is selected by means of an opcode attached to the move that writes
the trigger register. The function units can be pipelined and the latency of a unit is
managed by the compiler, which expects deterministic latencies. Dynamic latency has
to be managed at run-time by transport pipeline lock mechanism.
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Fig. 2. Structure of a three-inputs, one-output function unit in a TTA processors.

The design space exploration process used in Move framework, as described in [1],
is an iterative process where, in each iteration, the target processor architecture is varied
and the performance of the given application running on the processor is evaluated. The
user defines the maximum set of resources, i.e., the number of buses, the number and
type of FUs, etc. At each iteration of the exploration process, a target architecture,
defined by a subset of the maximum resource set, is selected. The given application is
mapped and scheduled onto the target architecture and simulated to obtain performance
statistics. Finally, estimates of area and speed of the architecture on target technology
are computed.

In the next iteration, one resource is removed and the map-schedule-simulate-estimate
process repeated. Based on the obtained statistics, the next target architecture is se-
lected by removing another resource. This process is repeated until a critical resource
is removed, i.e., the application cannot be scheduled without the resource. The critical
resource is put back and another one is removed. After a while, the target architecture
contains only critical resources and nothing can be removed. At this point, the explorer
begins to put resources back, but in different order. The explorer performs a predefined
number of such remove-add resource sweeps. After the exploration is completed, the
user can pick the target architectures with favorable cost and performance characteris-
tics for further optimizations.

The design space exploration process requires estimation of various cost metrics.
Different cost metrics of a digital circuit, e.g., area and power consumption, can be esti-
mated at different levels of abstraction. In general, the estimation is a trade-off between
accuracy and speed, i.e., better accuracy requires more details of the implementation.
There are several tools to obtain accurate estimates of area, delay, and power consump-
tion using physical models. These tools require that the VLSI implementation is avail-
able implying that the time consuming place and route phases have been completed.
There are also low-level power analysis methods operating at RT-level, which provide



comparable accuracy, e.g., [3] [4]. However, the low-level tools are not especially useful
in architectural exploration due to their long simulation times. In [5], several methods of
physical modeling, such as Rent’s rule and Donath’s wiring model, have been applied
for evaluating the area and delay of the protocol processor architectures. The Rent’s
exponents were allocated for each hardware resource in the processor and final cost is
obtained with linear approximation. The area accuracy is within 40% of true area.

Most of the efforts in power estimation have targeted at compiler optimizations,
i.e., creating power-aware software. For this purpose, cycle-by-cycle power estimation
is required. The estimation is often targeted to a specific microarchitecture, as with the
methods reported in [6] [7]. If architectural alternatives are to be explored, the estima-
tion method has to support higher level models. E.g., in [8], cycle-level performance
simulator is used to obtain the hardware access counts. These counts are used to obtain
power estimate with the aid of parameterizable power models of the resources. These
models are based on effective capacitance and fall into four categories: array struc-
tures, fully associative content-addressable memories, combinational logic and wires,
and clocking. Since the power models are based on capacitance, the models cannot be
obtained automatically from a RT-level design. This implies manual work when new
models are created.

In [9], the power estimation of a processor core is based on switching capacitance
tables. Each function unit is analyzed with all the possible operand combinations. The
power accuracy was verified within 10% of results obtained with circuit level simulators
while the execution time was less than 0.1 sec per transition. The tabular power figures
implies large tables when the number of bits in the inputs is increased.

The estimation models can also be obtained automatically from RT-level compo-
nents as described in [10]. The elementary components are synthesized onto target
technology and characteristics are stored into a component-library. The characteris-
tics include both the delay and power consumption. The RT-level components are fairly
fine-grained, e.g., full-adders and logic gates, thus complex systems will contain a large
number of components. A power estimation method based on a higher level model
is proposed in [11], where each functionality of a peripheral device is modeled as an
instruction. Each instruction has a corresponding power mode, which allows a power-
per-instruction look up table to be created. The power consumption of the processor is
still based on measuring the current when a certain instruction is executed.

In the work described in this paper, the objective is architectural design space ex-
ploration, thus huge number of different processors are to be analyzed. This calls for an
extremely quick estimation method. In addition, the absolute accuracy of the estimation
results is not the main concern; the purpose is to obtain the relative cost of different de-
sign alternatives. After exploration, the user will pick up the most promising candidates
for further investigation.

3 Cost Estimation Method

Due to the fact that the design space exploration is an iterative process and a large
number of different architectures are analyzed, the cost estimation needs to be quick. In
addition, the estimation method has to be independent from technology, i.e., the same



tools should work when the target technology is changed. Finally, the exploration is
used to pick up candidates for further optimizations, thus the relative cost is needed
rather than the absolute cost.

In this work, we have exploited the fact that the exploration process contains already
simulation, which provides statistics of the utilization of each resource. In addition,
the framework contains a processor generator, which generates synthesizable hardware
description of the final processor structure. This generator relies on library components,
i.e., synthesizable hardware descriptions of resources such as function units, register
files, etc. Thus, descriptions of most resources are predefined.

3.1 Modified Design Space Exploration Process

In the original exploration process in [1], an important architecture parameter was fixed
before the exploration process; the latency of function units was given by the user. This
approach does not take into account that the latency of a function unit is dependent on
the timing requirement, i.e., a unit may require pipelining, which increases the latency,
when shorter delay is needed. In a similar fashion, the same unit may have a different
structure if delay requirements are different. E.g., simple ripple-carry adder is sufficient
for low clock frequencies but higher clock frequencies may require carry-look ahead
adders, thus the area and power of the units depends on the delay constraint.

In order to automate the selection of the FU latency, we propose that the cost in-
formation of several implementations of the same function unit is stored into a cost
database together with latency and critical path information. Given a delay constraint,
the latency of a function unit can be easily determined. This requires that the clock fre-
quency is not estimated like in [1]. The cycle time is either given by the user or is varied
by the exploration process.

The implementation of the function unit can be selected with the aid of the cycle
time and delay of the component when the inputs and outputs of the function unit are
registered, i.e., the critical path determining the delay is from a register to a register.
However, the output register is optional, thus it is possible that the critical path in a
complete processor is from the input register through the logic of the function unit
and the interconnection to the input register of another function unit. In such a case,
the interconnection delay has to be taken into account when determining whether the
component fulfills the given timing constraints or not.

The proposed design space exploration process is illustrated in Fig. 3. The inputs
of the exploration process are the unscheduled code of the given application, a set of
processor components (resources), and the cost database. In each iteration, a target ar-
chitecture is formed by selecting a set of resources. The architectural parameters that
are related to the implementation, such as latency, are obtained from the cost database.
The given application is then scheduled onto the target architecture and the parallel
code is simulated. Simulation results are finally used to estimate the cost of executing
the parallel code on the architecture. Each evaluated target architecture is stored with
its cost and performance statistics as one design point in the design space.
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Fig. 3. Principal flow diagram of the proposed design space exploration process. HLL: High-level
language.

3.2 Technology Characterization

Implementation-specific data about the resources is stored in the cost database. These
data can be obtained by running logic synthesis tools and hardware simulators and
analyzing the results. This process, called characterization, can be automated and per-
formed off line, since the same cost database can be shared by several exploration runs,
with different applications and initial architectures. The hardware description of each
function unit is stored in libraries. Those descriptions are needed during the processor
generation phase. During the characterization phase, a block is synthesized with vary-
ing synthesis constraints and simulated. The implementation data is obtained from the
report files.

Each type of hardware resource, i.e., function units, register files, and interconnec-
tions, is characterized by a specific set of properties, as shown in Table 1. The database
contains also an entry for the control logic. In addition, certain metrics may consist of
several values for each entry.

3.3 Area Estimation

The total area of the target architecture is obtained as the sum of the area of each hard-
ware resource, i.e., area of function units, register files, interconnection, and control
unit. The area of a particular function unit and register file is obtained by querying the
corresponding entry from the database. If an equal match does not exist in the database,
the closest possible database entries are used for estimating the area.

The area estimation of interconnect is obtained with a slightly different approach.
The interconnect consists of sockets, i.e., connections of a port to buses, as illustrated in



Table 1. Properties characterizing the hardware resources

Resource Characterized by

Function Unit || operations, word width, operation delay (critical path), output de-
lay (delay from last register to output), latency, no. pipeline stages,
pipeline control discipline, no. input ports, no. output ports

Register File no. words, word width, delay, no. read ports, no. write ports

Interconnect fanin, fanout, word width, delay

Control Unit || density of the interconnection network

Fig. 4. In our case, busses are realized with the aid of one-directional bit lines instead of
tristate buses as in [1]. The input and output sockets contain AND gates and multiplex-
ers, respectively. The actual bus contains an OR gate, thus the area estimate is obtained
by summing the area estimates of those components from the cost database.

3.4 Energy Estimation

The estimate of the energy consumed by a resource cannot be obtained directly from
the database but it must be linearly approximated from the utilization, and weighted ac-
cording to the used cycle time. The energy estimate of a function unit, EXY, is obtained
as follows
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Fig. 4. Example of TTA processor: (a) logical diagram and (b) principal structure.



where E; is the dynamic energy per clock of operation i, Ejy;, is dynamic energy when
no operation is executed per clock, Eg4ic 1s the energy due to leakage current during
time #4, t; is the delay of critical path, U; is the number of times the operation i is
used, n, is the number of cycles executed in the simulation, and 7. is the clock period.
The parameters E;, Ejj., Egaic, and t; are obtained from the cost database, while the
parameters U; and n. are obtained from the instruction set simulation. The clock period
t.1x 1s defined during the resource selection.

The energy of a register file, ERF', requires a different formulation. An RF is charac-
terised by its number of input and output ports, which has a strong effect on the power
consumption. The formula used to compute the energy is

net,
EN = (Z ZEVWUVW) +E7’" ®))

row

where E,,, is the dynamic energy per clock when r reads and w writes are performed in
parallel, U,,, is the number of times when r reads and w writes are performed in parallel
in simulation, and Eg ;. is the energy per 7; due to leakage current of the RF. Again,
the parameters E,,, Egqic, and #; are obtained from the cost database and U, and n,
are given by the instruction set simulator.

The energy consumed by the interconnection is obtained with the same principle as
with function units in (1). For estimating the energy of a control unit, ESNTRL we have
used an extremely simple model:

ECNTRL — y _(Eo + dEy) (3)

where n, is the total number of bits in all the registers in the control unit and Ej the
dynamic energy per clock cycle of a 1-bit register. The parameter d denotes the den-
sity of interconnection network, which is describes how many of all the possible socket
connections are used, i.e., d = 1, if all the socket connections are connected (fully con-
nected interconnection). The parameter E; describes the additional energy consumed
per clock cycle due to instruction decoding and driving of the control signals to a socket
connection.

4 Experimental Results

In order to compare the accuracy of the proposed estimation scheme, we characterized
a set of function units described in VHDL on a commercial 0.11 4 ASIC technology
and created a cost database. We used a number of applications including 8 x 8 discrete
cosine transform and Viterbi decoding and selected several target architectures for each
application, with varying level of parallelism. The applications were compiled with
Move tools onto the target architectures and the Move simulator was used to obtain the
run-time statistics. A VHDL description of each target architecture was generated.

For each target architecture, the reference area was obtained by synthesizing the de-
sign using the Synopsys Design Compiler. The timing constraints used in the synthesis
were used as values of requested clock period in the estimations. The energy references
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Fig. 5. Experimental area and energy comparisons of three processor architectures executing the
same application. Processors A and B run at clock frequency of 100 MHz and processor C at 200
MHz. Ag, Bg,CE: Estimates. Ag, Bg,Cg: References. T': Execution time.

were obtained by performing first gate-level simulation for capturing the switching ac-
tivity. The activity information was used in the power analysis of the Design Compiler.
The simulation was performed by using the binary code generated by the Move tools.

An example of experimental results is given in Fig. 5, which shows area and energy
of function units (FU), register files (RF), interconnect (IC) and control logic (CN-
TRL) for one application executed on three different architectures. According to pre-
liminary experiments, the average error in area estimation is 5% and the maximum error
is 18.3%. The largest error is in the interconnect and control logic. The error in energy
estimation is larger: 10.5% on average and maximum of 34.8%. Again, the largest error
is typically in the interconnect and control unit due to the fact that the used models are
simple.

The speed of the estimation process is mainly dependent on the number of function
units and register files. The size of the cost database has also an effect on the estimation
speed. In order to have an idea of the estimation speed and its portion of the overall
design space exploration process, we measured the time an estimation takes on a Linux
work station with 600 MHz Pentium 3 processor. Target architectures ranging from 20—
70 kgates required 1-5 sec while simulation of these (500-2M instruction cycles) took
2-60 seconds. The actual compilation took 2-120 seconds. Therefore, one iteration in
the design space exploration, estimation of one processor took 5—-180 sec. When those
processors are synthesized on a work station with a 3 GHz Pentium 4 processor, the
logic synthesis alone takes from 2 hours to 2 days. The power analysis of the synthe-
sized structure with the switching activity capture in simulator requires another 2 hours
to 2 days depending on the number of instruction cycles.

5 Conclusions

In this paper, we have proposed a cost estimation methodology suited for design space
exploration for TTA processors. In addition, we proposed an improved exploration
process with tool-assisted selection of pipelining degree for function units of a given



target architecture. Our preliminary comparisons show that the proposed cost estima-
tion process is really quick. Therefore, it is well suited for exploration where hundreds
or even thousands of architectures are evaluated. In addition, the experiments show that
the area accuracy of the estimation is clearly sufficient for design space exploration.
The energy estimation does not perform as well, especially the estimation of intercon-
nect could be improved. However, the energy estimation accuracy is still sufficient for
exploration; it allows comparison of different processor architectures.
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