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Nowadays, application-specific processors are of great interest since they offer the best
possible trade-off between cost and performance. However, the design process of the
application-specific processors has proven to be a difficult and time-consuming chal-
lenge. Thus, automated design space exploration is the most interesting tool for desig-
ners in the area of customizable processors. By trawling through the design space and
notifying the most interesting target processor configurations, exploration tools assist
the designers to find the most suitable resources for a given application. Cornerstone
in the exploration tool, in addition to effective exploration algorithm, is the hardware
cost estimator, which has to be fast, accurate enough, and technology independent.

MOVE framework is a set of non-commercial software tools for designing application-
specific processors. The framework utilizes transport triggered architecture (TTA) pro-
gramming model, where the program specifies only the data transports to be performed
by the interconnection network. Operations occur as a side effect of these explicitly de-
fined data transports.

In this thesis, a hardware cost estimator was developed into the MOVE framework.
The estimator is based on the database of the costs of hardware resources. The purpose
of the estimator is to evaluate the target processor for a given application in terms of
chip area, power consumption and timing. The developed estimator improved the flexi-
bility and accuracy of the old estimator of the MOVE framework. The flexibility was
improved a lot in form of changing the technology, which requires only to replace the
cost database with a new one that is generated for the new technology. In addition, the
estimator is utilized with prime accuracy and efficiency. Furthermore, the implementa-
tion of the estimator is flexible and expandable utilizing object-oriented programming
in designing the data structures and search algorithm of the cost database.
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Sovelluskohtaiset käskykantaprosessorit ovat erittäin kiinnostavia, koska ne tarjoavat
parhaan kompromissin kustannusten ja suorituskyvyn välille. Niiden suunnitteleminen
on kuitenkin erittäin vaikea ja aikaavievä prosessi. Niinpä automaattiset suunnittelu-
työkalut ovat saavuttaneet suuren kiinnostuksen suunnittelijoiden parissa. Käymällä lä-
pi mahdollisia suunnitteluratkaisuja ja ilmoittamalla kiinnostavimmista prosessorikon-
figuraatioista automaattiset suunnittelutyökalut auttavat suunnittelijoita hakemaan par-
haita laitteistokomponentteja annetulle sovellukselle. Kulmakivi automaattisissa suun-
nittelutyökaluissa on tehokkaan hakualgoritmin lisäksi prosessorin kustannusestimaat-
tori, jonka pitää olla nopea, tarpeeksi tarkka ja riippumaton toteutusteknologiasta.

MOVE suunnitteluympäristö on joukko ei-kaupallisia suunnittelutyökaluja sovellus-
kohtaisten käskykantaprosessoreiden suunnitteluun. Se hyödyntää transport triggered
-suoritinarkkitehtuurin (TTA) mukaista ohjelmointimallia, jossa sovellus määrittelee
datan siirrot laskentayksiköiden ja rekisterien välillä. Operaatiot tapahtuvat näiden da-
tan siirtojen sivuvaikutuksena.

Tässä diplomityössä kehitettiin prosessorin kustannusestimaattori MOVE suunnitte-
luympäristöön. Estimaattori perustuu tietokantaan laitteistokomponenttien kustannuk-
sista. Estimaattorin tarkoituksena on arvioida prosessorikonfiguraatio annetulle sovel-
lukselle pinta-alan, tehonkulutuksen ja ajoituksen suhteen. Kehitetty estimaattori pa-
ransi joustavuutta ja tarkkuutta verrattuna MOVE suunnitteluympäristön vanhaan es-
timaattoriin. Prosessorin toteutusteknologian vaihtaminen sujuu helposti korvaamalla
kustannustietokanta uudella tietokannalla, joka on tehty uudelle teknologialle. Lisäksi
estimaattori on erittäin tarkka ja nopea. Estimaattorin ohjelmistototeutus on myös erit-
täin joustava ja laajennettava. Kustannustietokannan tietorakenteet ja hakualgoritmi on
suunniteltu käyttäen hyväksi olio-ohjelmoinnin periaatteita.
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1. INTRODUCTION

The current trend in programmable architectures, especially in digital signal processing

(DSP) application domain, is to move towards high-level language (HLL) program-

ming and customizable architectures [1]. The reason behind this is the increasing gap

between the productivity of designers and increased complexity of DSP applications.

By using customizable architectures, the hardware resources of the processor can be

tailored according to the requirements of the application. However, it is difficult to find

a satisfactory solution from the large design space; even hundreds of different architec-

ture alternatives must be designed and evaluated. Efficient evaluation requires a set of

software tools, such as HLL compiler and instruction set simulator as well as synthesis

tools. Utilizing these tools manually for each architecture configuration to gather the

design space extensively takes unacceptably long span of time. Thus, a design space

explorer is required to automate the process.

The evaluation of a processor configuration has to be performed fast to keep the explo-

ration time under control. Nevertheless, estimating rapidly and accurately the costs of

a target processor for an application has proven to be a difficult challenge. Estimating

the costs by utilizing the most accurate alternative, i.e., logic synthesis, takes far too

long. Quick, accurate enough, and technology independent procedure for the estima-

tion is optimal from the design space explorer’s point of view. Speed of the estimation

is appreciated almost as much as the accuracy, since the designer should be quickly

conducted into the interesting design area by the explorer.

Design space explorer modifies the target processor while searching for the most suit-

able configuration for a given application. Thus, the processor architecture must be

flexible, scalable, and customizable. Transport triggered architecture (TTA) is such

an architecture [2]. The MOVE framework is a design environment utilizing the TTA

concept for designing application-specific processors [3]. It contains a set of software

tools such as HLL compiler, instruction set simulator, hardware estimator, and design

space explorer.

In this thesis, a new cost estimation procedure based on a cost database is proposed.
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The ideas of the estimation are targeted to processors, which are composed of different

type of architectural resources. An example implementation of the hardware cost esti-

mator evaluating the area and power consumption of the target processor is described in

detail. The software implementation of the cost estimator is also represented, emphasis

being in the flexible cost database. In addition, the experimental results verifying the

accuracy and the speed of the estimator are described.

The structure of this thesis is as follows. Chapter 2 introduces the TTA concept to-

gether with its programming paradigm. In addition, the MOVE framework is described

with its subcomponents. First, the hardware and software subsystems are discussed.

Secondly, the design space explorer searching for the best configuration for a given

application is represented. Finally, the hardware cost estimator being responsible for

estimating the costs of a processor configuration is described. Chapter 3 represents

the principles of the cost estimation procedure based on a cost database. Moreover,

the functionality of the proposed hardware cost estimator is described in detail from

the user’s point of view. The software implementation of the estimator is presented in

Chapter 4. The actual estimator is described shortly while the emphasis is on the cost

database implementation. The data structures storing the database information are rep-

resented as well as the search algorithms supporting the database queries. Chapter 5

introduces the experimental results verifying the accuracy of the proposed estimator.

Both the area and the power accuracies are analyzed. Moreover, the experiments car-

ried out to verify the speed of the estimator are represented. Chapter 6 summarizes this

thesis by representing the conclusions.



2. MOVE FRAMEWORK

Customizable processor architectures are nowadays more and more under designers’

interest, since the design process of application-specific integrated circuits (ASIC)

takes unacceptably long span of time. Due to the fact that customizable processors

can be modified much easier than ASICs, the design process can be automated. The

MOVE framework provides such a design process. The TTA concept utilized by the

MOVE framework offers the flexibility, scalability, and modularity required by the

automated design tools.

Section 2.1 describes the TTA concept and its architectural principles as well as the

software aspects. In Section 2.2, a high-level description of the MOVE framework

is given together with its hardware and software subsystems. Section 2.3 introduces

the principles of the design space explorer of the MOVE framework. Moreover, the

exploration algorithms are described. Section 2.4 represents the original hardware cost

estimator of the MOVE framework.

2.1 Transport Triggered Architectures

Very long instruction word (VLIW) architecture has been an engrossing alternative for

the DSP applications due to their modularity. The organization of an example VLIW

processor with two function units (FU) is illustrated in Fig. 1. The number of FUs can

be increased and even application-specific FUs can exist. However, the complexity of

the bypass network and the register file (RF) increases rapidly since each input and

output of an FU requires a connection to the RF. Nevertheless, the problem can be

reduced, but not avoided, by partitioning the RFs and dividing the RFs into two levels.

In addition, the utilization of the interconnection network is low. [2]

TTAs were developed to avoid the problems that exist in VLIW architectures. The

complexity of the bypass network is reduced by moving the RFs into the same archi-

tectural level as the FUs. TTA is a flexible and modular architecture, hence an attractive

alternative in embedded systems. The high-level organization of a TTA processor is
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Figure 1. The organization of a VLIW processor with two FUs.

represented in Fig. 2. The FUs and RFs are connected to each other by an intercon-

nection network which is controlled by the program code. In the TTA programming

model, contrary to traditional operation triggered architectures (OTA) where opera-

tions are programmed, only the data transports to be performed by the interconnection

network are programmed. Operations occur as aside effect. Since multiple data trans-

ports may occur simultaneously, instruction-level parallelism (ILP) offered by VLIW

architectures is supported by the TTAs as well. [2]

2.1.1 Hardware Aspects

A TTA processor is composed of FUs, RFs, interconnection network, and control logic

as well as data and instruction memory. The interconnection network includes buses

and input and output sockets. Figure 3 depicts the structure of the TTA. [2]

FUs are responsible for performing the actual computation. They contain three types

FU−2

FU−3

D
at

a 
m

em
or

y

Instruction
fetch
unit

decode
Instruction

unit

Central
processing
unit

In
st

ru
ct

io
n 

m
em

or
y

In
te

rc
on

ne
ct

io
n 

ne
tw

or
k FU−1

RF−1

RF−2

Figure 2. Organization of the TTA.
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FU

FU

CNTRLRF RF IMEM

FU LSUFU DMEM 

Figure 3. TTA processor structure. FU: function unit. RF: register file. LSU: load-store unit.

CNTRL: control unit. DMEM: data memory. IMEM: instruction memory. Dots

represent connections between buses and sockets.

of registers: operand, trigger and result. Operand and trigger registers function as

the inputs of an FU whereas the result register is an output. The operands of an FU

are transported into the input registers by the interconnection network. Transferring a

value into the trigger register also initiates the functionality of the FU. Together with

the trigger move, the opcode, which specifies the operation to be performed in the FU,

is transferred. Some FUs have their specialized tasks, such as loading/storing values

into the data memory. Heterogeneous, even application-specific, multi-operand FUs

can be used without restrictions. Adding multi-operand FUs into a TTA processor is

trivial from the architecture point of view. The data can be flexibly written into many

input registers of an FU as well as read from the output registers since all the FUs

resemble each other from the interconnection network’s standpoint. Due to the same

reason, an FU can be easily pipelined.

RFs contains general-purpose registers storing temporary values required by the pro-

gram for a short time interval. RFs can be considered as a special FU containing input

and output ports. However, the number of RF ports can be reduced considerably com-

pared to VLIWs due to the fact that even one input port is enough for transferring

the data from any FU into that RF. Since no fundamental differences exist between the

FUs and RFs from the interconnection’s point of view, the RFs can be easily partitioned

without significant decrease in performance.

Interconnection network handles the data transfers between the FUs and RFs in the

TTA. As mentioned before, the interconnection network consists of the buses and input

and output sockets. The buses transfer data between the FUs and RFs. An input

socket contains multiplexers feeding operands from the buses into the FUs and RFs,

and an output socket contains de-multiplexers placing the result of an FU or RF into

the correct bus.
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grd dst ID src ID src IDdst IDgrd reserved immediate field

move slot 0 move slot 1

Figure 4. The instruction format of the TTA.

Each move bus can perform one data transport. Thus, the instruction of the TTA de-

picted in Fig. 4 must include a field for each move bus, hence the field is usually

denoted as move slot. A move slot consists of three fields: guard ID, destination ID

and source ID. Destination ID field indicates into which input socket the data from the

bus is written whereas the source ID indicates the output socket from which the data

is read. Guard ID field indicates whether the transport is performed or not in the bus.

It can be used to implement conditional statements. In addition to the move slots, the

instruction format includes reserved fields for long immediates. It is used for moving

long immediate values in the bus, e.g., program counter values for jumps.

The control logic is responsible for fetching the instructions from the instruction mem-

ory. Moreover, it decodes the instruction to activate the correct sockets to perform the

requested data transports utilizing the buses.

2.1.2 Software Aspects

Since only the data transports are specified by the program, only one type of operation

is supported: move operation, which performs a data transport from a source to a

destination. The operations occur as a side effect of the move operations. A normal

OTA subtraction:

sub r3, r1, r2

can be converted to the following move operations in TTA:

r1 -> sub.o

r2 -> sub.t

sub.r -> r3

The destination register sub.o indicates the operand register of the subtractor unit

whereas sub.t indicates the trigger register. The result register is indicated by the source

sub.r.
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The programming paradigm of the TTAs is mirrored compared to traditional OTAs.

It has several advantages. It allows new scheduling and allocation techniques to be

used in HLL compilers increasing the scheduling freedom. In TTAs, there are more

items to schedule than in OTAs, since OTA operations of a program are divided into

multiple TTA move operations. The moves can be scheduled freely as long as the

operand moves occur simultaneously or before than the trigger move and the trigger

move takes place before the result moves. Thus, multi-operand FUs are easy to sup-

port. HLL compilers can support optimizations such as software bypassing, dead result

elimination and operand sharing. However, implementing such a compiler is a com-

plex task due to all the advantages of scheduling possibilities. The compiler strategies

of the TTA are discussed in detail in [4], [5] and [6].

2.2 MOVE Tools

The MOVE framework is a toolset for designing TTA processors semi-

automatically [3]. Figure 5 depicts the general organization of the MOVE framework

which is composed of three main components: design space explorer, software subsys-

tem, and hardware subsystem. The software subsystem is responsible for generating

parallel code for the target processor from the HLL code. The hardware subsystem is

aimed at producing hardware description language (HDL) code of the target processor.

The purpose of the design space explorer is to search for a processor configuration,

which yields the best cost/performance ratio for a given application. Both the software

and hardware subsystems provide statistics for the design space explorer.

The architecture description is in a central role in the MOVE framework. It fully

characterizes the target processor, i.e., the type and number of FUs, RFs, RF ports

and buses. In addition, the connections between the buses and sockets are described.

The description does not restrict the number of different hardware resources. Even

application-specific FUs can be included in the architecture description. However, the

software subsystem has to be aware of the user-defined operations.

The software subsystem is described in Section 2.2.1 whereas the hardware subsystem

is discussed briefly in Section 2.2.2. Section 2.3 represents the functionality of the

design space explorer in detail.



2. MOVE Framework 8

Architecture
Description

statisticsstatistics Hardware
Subsystem

Software
Subsystem

Parallel
Object Code

Processor
Layout

Application
in HLL

Design
Space Exporer

Technology
Description &
Cell Library

Figure 5. The organization of the MOVE framework.

2.2.1 Software Subsystem

The purpose of the software subsystem is to generate parallel code for the target pro-

cessor for a given application. In addition, it provides execution time statistics for the

design space explorer. Figure 6 depicts the tools included in the software subsystem

together with their inputs and outputs. [6]

The starting point for the code generation is a HLL code specifying the application. It

can be written in either C or C++. The compiler front-end, based on the GCC, converts

the HLL code into sequential MOVE code where each data transport is performed

after another one. The sequential code can be passed to the sequential simulator which

provides profiling data of the application as well as statistics such as number of cycles

and moves, most used operations and data transports, and utilization of immediate

values of each bit width.

The compiler back-end is the most complex tool in the MOVE framework generating

the parallel MOVE code from the sequential one. It maps the functionality of the appli-

cation onto the resources described in the architecture description. The complexity is

caused by the optimizations performed by the back-end to obtain an efficient and small

parallel code. An optional input, i.e., the execution profile generated by the sequential

simulator, assists the back-end to optimize the code even better.

After the compiler back-end has produced the parallel MOVE code, the parallel simu-

lator may be invoked to verify the functionality of the generated code. In addition, the

simulator is useful for the designer to obtain different statistics about the parallel code

such as execution time, number of instructions and moves in the code, and utilization
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sequential simulator

C/C++ application
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Figure 6. The software subsystem of the MOVE framework.

of different hardware resources. The statistics are used by the design space explorer as

well.

2.2.2 Hardware Subsystem

The hardware subsystem is composed of the hardware cost estimator and processor

generator. The purpose of the cost estimator, described in more detailed in Section 2.4,

is to evaluate the processor in terms of area, power, and timing.

The processor generator produces a synthesizable very high speed integrated circuit

hardware description language (VHDL) [7] code from the architecture description.

The processor generator requires VHDL descriptions of the user-defined FUs used in

the target processor as well as properties of the transport buses. The generated VHDL

code can be further processed using any available commercial tool performing logic

synthesis to obtain the chip layout of the target processor. Detailed discussion about

the MOVE processor generator exists in [8] and [9].

2.3 Design Space Explorer

The design process of application-specific processors (ASP) is iterative requiring sev-

eral modifications to the target processor before it meets the requirements of the sys-

tem. In addition to the performed modifications, an iteration step includes evaluation

of the processor configuration. Performing the iterations manually takes far too long

if the possible design space has to be gathered extensively. In the MOVE framework,
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the design space explorer searches automatically for the best possible processor con-

figuration in terms of execution time, chip area, and energy consumption. Thus, the

explorer is a huge help for the designers to quickly conduct them into the interesting

area of the large design space.

The design space exploration process is composed of two independent phases: resource

optimization and connectivity optimization. First, the resources of the target proces-

sor configuration are optimized by varying the number of different resources. There-

after, the interconnection network, i.e., the connections between buses and sockets are

optimized by adding and removing them. The only motivation for having separated

exploration phases is practical: combined exploration of resources and connectivity

would entail a prohibitively high number of evaluation steps. The resource optimiza-

tion is described in Section 2.3.1 whereas the connectivity optimization is represented

in Section 2.3.2. [4]

The design space explorer evaluates the processor configuration after each modifica-

tion to obtain feedback about the appropriateness of the modification, i.e., to know

if the modification should be revoked or not. The evaluation is done by utilizing the

software and hardware subsystems of the MOVE framework illustrated in Fig. 5. The

software subsystem is used to compile and simulate the given application for the tar-

get processor. Hence, the execution time of the application is obtained. The hardware

subsystem, more specifically the hardware cost estimator, evaluates the given proces-

sor configuration in terms of chip area, power consumption, and timing. The original

estimator of the MOVE framework is described in Section 2.4.

2.3.1 Resource Optimization

The purpose of the resource optimization phase is to find the best possible combina-

tion of different hardware resources for a given application. Since the design space

is infinite and multi-dimensional, the explorer cannot consider all the aspects affect-

ing on the goodness of the target processor configuration [4]. Only a subspace of the

three-dimensional (3-D) design space is interesting for the designers. This subspace

consists of the essential design points, i.e.,Pareto points. A design point is a 3-D

Pareto point if no other design point is better in all three properties (execution time,

area, energy) accommodated by the explorer [4]. Pareto point concept is illustrated in

two dimensions in Fig. 7 meanwhile Fig. 8 depicts the resulting Pareto points achieved

from the resource optimization. However, they do not seem to be Pareto points in

terms of area and execution time. If the third dimension, i.e., energy consumption, is
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Figure 7. Pareto point concept.

accommodated, all the design points shown in Fig. 8 are Pareto points in 3-D design

space. The most interesting design alternatives are usually those lying the nearest from

the origin. Thus, some of them are selected for further processing in the connectivity

optimization.

The explorer modifies four different properties of a target processor during the resource

optimization: FUs, buses, sizes of the RFs, and RF ports. A modification focusing on

the FUs always adds or removes an entire FU together with the sockets connected to

it. Instead, buses are removed decrementally by reducing its width in steps from 64

bits to 32 and further to 1 and 0 bits. A null bit width means, of course, that the bus

is removed from the configuration. Addition of resources proceeds in other direction.

Registers are removed/added in groups such that the number of registers per register

file is always 0, 2n or 2n�2n�1, wheren � 0. RF ports are easy to manage since they

are just added or removed independently from other resources. [4]

Local Search Algorithm

The Pareto points are found using a local search algorithm [4]. However, the resource

optimization starts from an oversized processor configuration by removing useless re-

sources. A resource is considered useless if a processor configuration with unchanged

cycle count is obtained after removing that specific resource. Since these resources

do not give any contribution to the performance, they will not be considered anymore

during the rest of the exploration. Thereafter, the explorer starts to search for the most

cost-efficient configurations of the design space by utilizing the local search algorithm.

The explorer requires a basis to determine which of the two configurations is better.

Thus, a formula combining the characteristics and quantities of a configuration in one
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Figure 8. The most interesting design points found by the resource optimization.

number, which represents its “quality”, is defined as

quality �

��t0
t

�α
�

�
A0

A

�β
� 1

α�β

� (1)

whereα andβ are constants, usually in range from 1 to 5, that are reflecting the im-

portance of execution time and area, respectively,t0 andA0 are the execution time and

the area of the initial processor configuration, whilet andA are the execution time and

the area of the processor configuration currently being evaluated.

The local search algorithm proceeds by alternating two type of search phases, called

reduce and extend phases. In a reduce phase, resources are removed one by one from

the target processor configuration until a minimum configuration is found. A target

processor configuration is considered “minimal” if the compiler fails to map the data

transports specified by the application onto the target processors obtained by removing

any resource from the “minimal” configuration. The process is reversed during the

subsequent extend phase: removed resources are put back into the target processor

configuration in a different order until the initial configuration is reached again.

Both extend and reduce phases are performed five times during the local search algo-

rithm with different quality functions. The values ofα andβ exponents that determine
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the quality function used in reduce and extend phases are varied according to the fol-

lowing set of (α, β) 2-tuples:

reduce: {(1,1), (1.5,1), (2,1), (2.5,1), (3,1)}

extend: {(1,1), (1,1.5), (1,2), (1,2.5), (1,3)}

Due to different quality functions, the explorer moves in the different area of the design

space each time an extend or reduce phase is performed since the area and execution

time has different weighting in the function.

Each time a hardware resource is removed from the target processor, the local search

algorithm evaluates the design points that lie in the neighbourhood of the current design

point, i.e., they can be obtained from the current design point by removing a resource.

Thereafter, one of them is selected and the process is repeated with the selected point.

Which resource is removed is determined by the quality function. In thefirst fit tech-

nique, the first resource which yields a target processor configuration with a higher

quality than the current configuration is chosen. If no such resource can be found, the

resource that gives the best possible quality is removed. In thebest fit technique, the

resource that gives the best possible quality is removed always. Similar procedure is

used while adding resources.

Backtracking

The backtracking search algorithm is an optional extension of the local search algo-

rithm. The backtracking phase starts after the local search phase is completed and it

explores a more extensive neighbourhood of the Pareto configurations found by the

local search algorithm and often finds several new Pareto processor configurations.

However, the exploration time increases approximately two to five times when the

backtracking algorithm is used.

The neighbourhood of the initial Pareto configuration is searched by a recursive algo-

rithm sketched in Alg. 1. It evaluates all possible processor configurations obtained by

removing up todepth_limit hardware resources from the initial Pareto configuration

wheredepth_limit is a constant indicating the backtracking depth limit. Whenever a

new Pareto configuration is found, its neighbourhood is also searched.

At each step, one of the hardware resources is removed from the initial Pareto config-

uration. If the obtained configuration is not a new Pareto configuration, the algorithm
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Algorithm 1 ReduceResourcesBT(depth)
if depth = 0 then

return

end if

for all hardware resourcesr in the processor configurationC do

remover from C

if C is a Pareto configurationthen

ReduceResourcesBT(depth_limit)

else

ReduceResourcesBT(depth-1)

end if

put r back inC

end for

recursively removes another resource from the newly found configuration. This pro-

cess continues until one of two conditions is met:

� the number of steps exceeds the backtracking depth limit

� the obtained configuration is a new Pareto point.

In the first case, the algorithm backtracks one recursion level, to the configuration

obtained before the last reduce step, and then tries removing another resource from

it. In the second case, the same procedure is repeated all over again on the obtained

configuration.

2.3.2 Connectivity Optimization

The resource optimization is definitely the most important part of the design space

explorer. However, the connectivity optimization is also essential part of the design

process when a cost-efficient target processor is designed for a given application. By

reducing connections between buses and sockets, the capacitive load of the buses is

reduced, which may shorten the critical path of the overall system and, therefore, in-

crease the maximum clock frequency at which the target processor can run. In addi-

tion, removing connections also results in smaller area due to simpler (de)multiplexers

in the sockets. Furthermore, the instruction size may decrease since the number of

addressable locations per bus is lower. [4]
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Figure 9. The execution time in terms of removed connections in the connectivity optimization.

The connections are reduced in a round robin fashion. The connection that will be

removed from the bus is the first connection that has no influence on the cycle count.

If no such connection exists, the connection with the lowest influence on the cycle

count will be taken. This process is repeated until the execution time starts to increase.

Figure 9 depicts the behavior of the execution time in function of number of removed

connections. Selecting the fastest design alternative, where the most of the connections

are removed, gives the best cost-efficiency. However, the programmability of such a

specific processor configuration is poor indicating that even a slight change or bug fix

to the application might turn the processor useless. Thus, selection of the processor

from the alternatives given by the connectivity optimization is a trade-off between

programmability and cost-efficiency. [4]

2.4 Original Hardware Cost Estimator

The hardware cost estimator is responsible for evaluating the target processor in terms

of chip area, power consumption, and timing for a given application. The results are

mostly used in the design space explorer to compare these statistics with other config-

urations. Thus, the explorer is able to guide the process of finding the most appropriate
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configuration for the given application. In addition, the cost estimator may be used to

obtain quickly the suggestive costs of a processor configuration.

The estimation procedure of the original MOVE estimator included FUs, RFs, buses,

input and output sockets as well as instruction memories. However, the control logic

was not taken into account separately but it was accommodated in the costs of other

resources. Moreover, the area and timing were evaluated but the power consumption

analysis was not supported. [10]

The original MOVE estimator was based on the modeling of each hardware resource.

Mathematical functions representing area and timing characterics of the architectural

resources are derived through experimental data about the behavior of the TTA re-

sources. The equations depend on the architecture parameters as well as on the tech-

nology characteristics. The equations can be found in [10] with detailed reasoning.

Nevertheless, the properties of the original MOVE estimator described in Section 2.4

were not completely satisfactory. It had a lack of flexibility in form of changing the

technology, which was hard-coded into the source code. The original model consisted

of several technology characteristics as well as coefficients in the equations that were

hard-coded in the source code. In addition, some of the technology characteristics

were too detailed, for example, area of a tri-state buffer, output capacitance of a tri-

state buffer, and time constant of a flip-flop output. Thus, the buses must be formed

out of tri-state buffers and the implementation of the interconnection network could not

have changed. Technology characteristics and the coefficients of the model could have

been moved into a file to avoid recompilation when the technology changes. Thus, the

technology could have been changed by modifying these variables. However, modifi-

cations of the source code would have been needed if a new technology characteristic

had been adopted into the estimation or if the model had changed even slightly.



3. COST ESTIMATION

The purpose of the hardware cost estimator is to evaluate the target TTA processor

in terms of area, power consumption, and timing. The area indicates the chip area

taken by the processor configuration from the silicon when implemented. The power

consumption means the power consumed by the processor for the execution of a given

application. The maximum clock frequency supported by the processor configuration

is characterized by the timing evaluation. The estimation of the mentioned properties

has to be performed by utilizing a procedure which is automated, accurate enough,

quick, and technology independent. The best possible accuracy could be obtained by

performing logic synthesis together with gate-level simulation. However, the estimator

is an important tool in the design space exploration process as depicted in Fig. 10. The

explorer evaluates hundreds, or even thousands of processor configurations using the

hardware cost estimator. Thus, as logic synthesis takes unacceptably long span of time,

it is not an alternative to be used as the estimation procedure. Due to the high speed

requirements, the accuracy has to be compromised.

Technology independency is required from the estimation process in order to be flexi-

ble for the user to try different technologies. Thus, changing the technology should be

made as easy as possible. In addition, the estimation procedure must be automated so

that the design space explorer can take advantage of the estimator to obtain the costs

of the target processors.

Alternative estimation methods are described in Section 3.1. High-level principles of

the proposed estimation procedure is presented in Section 3.2. Section 3.3 discusses

the information on which the estimation procedure is based. The evaluation of the

target processor area is described in Section 3.4 whereas Section 3.5 introduces the

power consumption evaluation. The timing estimation is represented in Section 3.6.
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Figure 10. The role of the hardware cost estimator in the design space explorer.

3.1 Alternative Estimation Methods

Extensive research efforts have been used on estimation methods but a fast, accurate

enough, automated method does not exist. A common approach for the estimation is

physical modeling where specific formulas evaluate the costs of a processor. The for-

mulas are usually depending on the technology characteristics from different libraries

as well as some metrics about the architecture. The problem of these methods in larger

architecture domains seems to be the lack of accuracy. However, the methods are usu-

ally extremely rapid. In [11], several methods of physical modeling, such as Rent’s

rule and Donath’s wiring model, have been applied for evaluating the area and delay

of the protocol processor architectures. The method was elaborated in [12] by probing

experimentally the Rent’s exponents for each hardware resource in the processor and

applying linear approximation. The area accuracy is in the range of 10% to 40%. In

[13], the costs of the units are taken from a library while the interconnection is eval-

uated premised on the average area of each entity in the interconnection network. An

interesting and completely different approach based onthe order of superiority of the

processor configurations is proposed in [14]. The absolute values cannot be obtained

from the cost estimation procedure but different architectures can be arranged into the

order of superiority, which is derived from the formula of thefidelity describing the

goodness of the architecture. In principle, the explorer does not need to know the

absolute costs but it is only interested in the relative costs of the design alternatives.
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3.2 Principles of Proposed Hardware Cost Estimator

The proposed estimation procedure is based on a priori information on area, power,

and timing statistics of the hardware resources. First, each hardware resource is char-

acterized on a given technology. Secondly, the area and power of a target processor are

evaluated based on this information.

The estimator requires information about the used technology with which the target

processor is going to be implemented. Circuit manufacturers provide information on

the physical characteristics of their processes and devices in various formats and dif-

ferent abstraction levels. It would be too difficult to support all these formats in the es-

timator. Instead, a description at a higher abstraction level is used to provide the phys-

ical information of the target technology. This description is structured as a database,

henceforth to be called thecost database. Since the cost database includes area, power

and timing statistics of the hardware resources, estimation procedure does not need to

take the used technology into account. In this approach, technology dependency lies

in the cost database, to be exact, in the creation of the database. Thus, it can be easily

changed.

The role of the hardware cost estimator in the design space explorer as well as its

inputs and outputs are depicted in Fig. 10. The estimator takes as an input the cost

database and the architectural description of the processor to be evaluated. In addition,

the utilization statistics is obtained from the simulator to achieve more accurate power

evaluation. As an output, the estimator provides an evaluation of the processor config-

uration for a given application in terms of chip area, power consumption and timing.

The output of the estimator is mostly used by the design space explorer to guide a

semi-automatic design process but the estimator may be invoked independently from

the explorer to obtain suggestive statistics.

The estimator accommodates FUs, RFs, buses, and input and output sockets in the

evaluation as well as the control logic. Control logic includes, in addition to the con-

trol signals, registers at least for the program counter, return address, short and long

immediates, boolean values and instruction word. Memories, however, are excluded

from the processor evaluation.
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Table 1. Properties characterizing the hardware resources.

Resource Characterized by

Function unit supported operations, bit width, cycle time, latency

Register file size, read ports, write ports, bit width, cycle time

Bus fanin, bit width, cycle time

Input socket fanin, bit width, cycle time

Output socket fanout, cycle time

Control logic density of the interconnection network

3.3 Cost Database

The cost database includes area, power, and timing statistics of the hardware resources

existing in the TTA target processors. Each hardware resource is characterized by

some of its properties as illustrated in Table 1. The cost database includes statistics of

the resources for different characteristics. Since power consumption depends on the

utilization of a hardware resource piecewise linearly, power values need to be given

for different utilizations. One expression of the statistics and characteristics forms a

database entry. For each resource of the TTA, i.e., FUs, RFs, buses, and input and out-

put sockets, several entries exist in the database. In addition, the database contains one

entry for the control logic. During the creation of the database, area, power, and timing

of the resource have to be identified for different combinations of the characteristics

mentioned in Table 1.

The creation of the cost database can be done by utilizing the preferred way of the

designer, e.g., the designer may know some of the statistics of his hardware resources.

Thus, the statistics can be written by hand into the database. However, utilizing any

commercially available synthesis tool is recommended. In addition, the creation should

be automated in a way or another to easily recreate the database or to add comfortably

new entries.

While the estimator requests entries from the database to evaluate the costs of a target

processor, flexibility should be supported. The database should manage queries where

the perfect match for a certain hardware resource does not exist in the database. Perfect

match means that each characteristic of a hardware resource is equal with the database

entry. Statistics of other entries can be utilized in the evaluation if the behavior of the

resource supports that. The following query types, usually called as match types, are

supported for each characteristic:
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� exact match: matches if equal characteristic is found from the database

� superset: matches if greater characteristic or a superset is found from the

database

� subset: matches if smaller characteristic or a subset is found from the database

� interpolation: matches if smaller and greater characteristic is found from the

database; then linear approximation is used for calculating new statistics for the

new database entry.

Nevertheless, some match types cannot be used for certain characteristics due to data

types which represent their values. For example, interpolation cannot be used for sets.

Basically, the format of the database may be anything, e.g., a convinient, human read-

able text file or very specific, small binary file. The proposed estimator uses currently

a textual database, which is created utilizing Synopsys Design Compiler [15]. The

database contains multiple entries for each hardware resource type of the TTA. An ex-

ample database is composed of a couple of entries for each resource type as represented

in Appendix A. Each entry has the following fields representing the statistics:

area Area of an entry. The area unit (mm2, equivalent gates) can be freely chosen, on

condition that the same unit is used throughout the database.

delay Critical path of an entry, in nanoseconds. The critical path is defined as the

maximum delay inside an entry. In pipelined FUs it means the maximum delay

between any two adjacent pipeline stages.

power Total power consumption of an entry given as multiple (utilization, power)

pairs. The utilization here is the fraction of the total cycle count where the entry

is used. A model for power consumption as a function of utilization can be

constructed by means of piecewise linear interpolation.

In addition to the statistics, an entry contains the properties characterizing the resource.

A common characteristic for all entries, i.e., cycle time, is described as follows:

clk Length of clock period for which the block is optimized, in nanoseconds. Using

this characteristic, it is possible to distinguish implementations of the same entry

designed for high speed (large area and power) or for small area (low speed). The

queries support subset match type for this characteristic.
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FU entries include, in addition to the common property, the following characteristics:

oper Set of operations the function unit can perform. The queries support superset

match type for this characteristic.

data Bit width of the FU, i.e., the width of the widest operand in the FU. The queries

support interpolation match type for this characteristic.

latency Latency of the operations supported by the FU. The queries support only exact

match for this characteristic.

RF entries accept the following characteristics:

size Number of registers in the RF. The queries support interpolation match type for

this characteristic.

rd Number of read ports. The queries support interpolation match type for this char-

acteristic.

wr Number of write ports. The queries support interpolation match type for this char-

acteristic.

data Bit width of the RF, i.e., the width of one register in the RF. The queries support

interpolation match type for this characteristic.

Bus entries have the following characteristics:

fanin Number of FU or RF output sockets connected to the bus. In addition, one

connection is added if the bus supports short immediates, since it can be consid-

ered as an output socket. The queries support interpolation match type for this

characteristic.

data Bit width of the bus. The queries support interpolation match type for this char-

acteristic.

An input socket entry is composed of the characteristics as follows:

fanin Number of buses the input socket is connected to. The queries support interpo-

lation match type for this characteristic.
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data Bit width of the input socket. The queries support interpolation match type for

this characteristic.

The characteristic included in the database for the output socket entries is as follows:

fanout Number of buses the output socket is connected to. The queries support inter-

polation match type for this characteristic.

The information about the control logic in the database is different from other entry

types. It consists of the two declarations having statistics as follows:

connectivity Relative connectivity of the transport network. It is computed as the ra-

tio between the number of connections in the interconnection network divided

by the number of connections in the fully connected version of the same inter-

connection network.

area Area of one register element in the control logic for the given connectivity.

power Power consumption of one register element in the control for the given con-

nectivity.

3.4 Area Estimation

The total area of the processor configuration is obtained by the sum of the area of each

hardware resource as follows

A �∑AFU �∑ARF �∑Abus�∑Ainsock�∑Aoutsock�Acntrl (2)

Area of a specific resource is obtained by querying the corresponding entry from the

database.

However, characterization is not straightforward in case of interconnection elements,

i.e., buses and input and output sockets. A data transport from one register to another

takes one cycle. During that time, the data passes an output socket, a bus and an input

socket. Thus, each interconnection resource is not utilized throughout the entire clock

cycle. The following assumptions are made of the time, which a certain resource is

active from the whole clock cycle:

� bus is utilized 25% of the clock cycle
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� input socket is utilized 30% of the clock cycle

� output socket is utilized 30% of the clock cycle

� buffers between the interconnection elements are utilized 15% of the clock cycle.

Analysis of example TTA processors indicated that the area and power of the buffers

are negligible. Thus, they are ignored in the evaluation process.

Slightly different approach is used for the evaluation of the output sockets, for which

each bit line is characterized in terms of its fanout and cycle time since the bit width

cannot be assigned to the output sockets. The total area of an output socket is achieved

by adding up the area of each bit line as follows

Aoutsock �
1

∑
i�n

biAi (3)

wheren is the number of buses in the target processor,Ai is the area of a bit line driving

i buses, andbi is the number of bit lines drivingi buses. An output socket which is

driving four buses of various bit widths is depicted in Fig. 11. Its total area is

A � 8A4�8A3�0A2�16A1 (4)

The first eight bit lines of the output socket are driving all of the four buses since each

of the buses is composed of eight or more bits. Due to the fact that the bit width of

three buses, i.e., namely Bus2, Bus3 and Bus4 is more than eight and at least 16, next

eight bit lines drive these three buses. The upper 16 bit lines of the output socket are

driving only one bus, i.e., Bus4, since no other bus has more than 16 bits. Bit lines that

are driving exactly two buses do not exist.

A completely different approach is used for the estimation of the control logic. Our

approach is based on the number of registers in the control. The control logic is actu-

ally not characterized in the cost database but it is rather physically modeled to obtain

the area of one register in the control. The model is based on the density of the in-

terconnection network, which means the amount of connections from the maximum

number of connections, i.e., all possible connections exist between buses and sockets.

The total chip area taken by the control is

Acontrol � nregsAreg (5)

wherenregs is the number of registers in the control andAreg is the area of one register.

The area of one register in the control is

Areg � A0�dAs (6)
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Figure 11. An output socket driving four buses of various bit widths.

whereA0 is the base area of one register in the control,d is the density of the in-

terconnection network, andAs is the slope of the area of one register in function of

the density of the interconnection network.A0 andAs can be obtained from the cost

database whereasd is a property of the target processor. The number of the registers

in the control can be achieved by summing up all the registers caused by numerous

properties of a target processor. Table 2 illustrates the number of registers caused by

different processor elements to the control logic.

3.5 Power Estimation

The estimate for the total power consumption is

P �∑PFU �∑PRF �∑Pbus�∑Pinsock�∑Poutsock�Pcntrl (7)

Thus, it is obtained utilizing the same principles as for the area estimation. In the

beginning of the power evaluation, the application is compiled and simulated to obtain

utilization statistics of the hardware resources. Contrary to the area, the final power of

a resource cannot be obtained directly from the database but it must be approximated

piecewise linearly from the utilization, and weighted according to the used cycle time

as follows

P �
� tdb

t

�
�P0�UPs� (8)
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Table 2. Number of registers in the control logic caused by the processor elements.

Element Number of registers

Program counter log2�number o f instructions in application�

Return address log2�number o f instructions in application�

Long immediate size o f long immediate unit

Short immediate length o f short immediate�1

Input sockets log2�number o f connections to buses��1

Output sockets number o f driven buses

Boolean register number o f boolean registers

Register file log2�number o f registers� �numbers o f writeports

Function unit log2�number o f supported operations��1

Instruction register size o f the instruction word

wheret is the cycle time utilized by the processor,tdb is the cycle time characterizing

the resource,P0 is the base power, i.e., the power with the closest possible utilization

which is smaller than the requested utilization,U is the utilization, andPs is the slope

of the power in function of the utilization in the requested utilization range.

The power evaluation contains similar differences from the main estimation procedure

as the area estimation. The interconnection elements are characterized differently from

other resources. In addition, the power consumption of the output sockets is calculated

differently. The power obtained using Eq. 8 gives the power of one bit line. Thereafter

each bit line has to be added up to obtain the total power consumption of the output

socket. Moreover, the power consumed by the control logic is obtained using the same

model as for the area estimation.

3.6 Timing Estimation

Currently the cost estimator does not calculate the minimum cycle time. However,

the designer can provide it as a parameter for the estimator. In the future, the timing

evaluation should be included but it was not the first priority since the designer might

actually have better knowledge of the desired cycle time. In addition, a really accurate

timing evaluation is even more difficult than the estimation of the power consumption.

Therefore, the inaccuracies would exist even more if the cycle time, which is used for

characterizing the hardware resources, is not accurate in the database queries.
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The previously described estimation process was implemented in the MOVE frame-

work. In other words, the hardware cost estimator of the MOVE framework was

rewritten to achieve more accurate and flexible estimator.

The implementation of the estimator consists of the two main parts: the cost database

and the application, i.e., client using the services provided by the database to calcu-

late the costs of the processor configuration. The main focus in the rewrite process

was to implement a flexible and expandable cost database without ignoring the effi-

ciency. Expandability means that the following additions are easy and straightforward

to implement to the database:

� new entry type to the database

� new field type to a database entry

� new data type to an entry field

� new statistic element.

In addition, the queries should support different match types, i.e., exact match, super-

set, subset and interpolation, as well as the following modifications:

� adding a new match type

� implementing a completely new search algorithm.

The flexibility and expandability requirements mentioned above cannot conduct the

database implementation into an inefficient solution. In as much as the design space

explorer represented in Section 2.3 evaluates hundreds of processor configurations in

one completion, the cost estimation must be followed through as quickly as possible.

High-level architecture of the hardware cost estimator is composed of the two mod-

ules: CostDatabase and Application. The CostDatabase module is described more

specifically in Section 4.1 whereas Section 4.2 represents theApplication module be-

ing responsible for the cost result calculations.
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4.1 Cost Database

The cost database implements the services for storing the data and querying the entries

from the database. It highly utilizes object-oriented programming paradigm [16] to im-

plement required services. In addition, two design patterns are used, namelyFaçade

andStrategy [18]. The cost database is composed of two modules and a few classes as

depicted in Fig. 12. TheCostDatabase class is in a central role in the module. It pro-

vides the services for the clients of the database system. An entry is stored utilizing the

Entry module sketched in detail in Section 4.1.1. However, the most important service

of the database is theSearch() interface implementing the queries to the database ex-

ploiting theQuery module. Section 4.1.2 describes the implementation of the queries,

i.e., the class hierarchy to realize a flexible and expandable search algorithm.CostD-

BReader is a class for implementing the reader of theCostDatabase from a specific

file utilizing lex and yacc [17].

4.1.1 Data Storage

The cost database needs to store the entries in a flexible and expandable way. The

class hierarchy used for the data storage of the database that supports the requirements

is depicted in Fig. 13. TheCostDatabase class contains a map for storing different

entry types.InsertEntry() function can be used to add an entry to the database.

CostDBEntry is the main class for representing a cost database entry. It consists of the

Figure 12. Class diagram of the cost database.
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Figure 13. Class diagram of the module storing the entries.

search key and the statistics represented by theCostDBEntryKey andCostDBEntryS-

tats classes, respectively.CostDBEntryStats class comprises the data for area, delay,

and power consumption, which is represented as pairs of utilization and power.Cost-

DBEntryKey incorporates the fields of an entry that characterizes it, i.e., search key.

Nevertheless, theCostDBEntry is a façade for forwarding the interface calls to the

complex subparts, which can be also used independently. This is one of the purposes

of theFaçade design pattern. The advantage is to group together the statistics and the

search key of the database entry, and to still allow to design them separately. Being

the façade, the clients of the database entries need only to manageCostDBEntry ob-
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jects instead of its subparts, hence promoting weak coupling between an entry and its

clients. The clients of the database entries do not need to be aware of the complex

internal structure if they do not care about it. However, theFaçade design pattern does

not prevent the clients from using the subpart classes directly if they need to. In fact,

this is required since the use of the search key is needed independently from the statis-

tics in the client. An alternative for theFaçade pattern would have been to compose an

entry of each search key field and statistic. Thus, if an entry would have been used as a

search key, the statistics would have always existed as unwarranted information. [18]

CostDBEntryKey, then, describes the properties of an entry that are used as a search

key. Thus, it is composed of the type of an entry, and fields, i.e.,EntryKeyField objects

representing a search key field of an entry. From aCostDBEntryKey object, type and

specific fields can be requested.

Each field of an entry key contains some data, which is represented by theEntryKey-

Data class.EntryKeyField class is composed of the data and the type of the field, which

are both represented by own classes, namelyEntryKeyData andEntryKeyFieldProp-

erty, respectively. However,EntryKeyData is an abstract base class for different data

types that the field can represent. It defines the interface that the data types should im-

plement providing the search algorithms a way to compare different fields. Currently,

the following data types are implemented:

� integer represented byEntryKeyDataInt class

� double represented byEntryKeyDataDouble class

� operation set represented byEntryKeyDataIntSet class.

The interface of theEntryKeyData provides the clients a flexible and generic way to

handle the data. However, the actual data value cannot be obtained, which is a draw-

back. Fortunately, it is not a huge problem since the clients usually require little infor-

mation about the actual data values, if at all. Nevertheless, if the client needs the data

value itself, it can be obtained as a string and converted to the correct format.

Each database entry, as well as the fields of the entries have a type. They are rep-

resented by the classesEntryKeyProperty and EntryKeyFieldProperty, respectively.

ClassEntryKeyProperty contains static methods for creating and obtaining certain en-

try types. The class ensures that only one instance of a specific entry type exists.

Hence, the comparison between the entry types can be done using pointers, which

gives an important efficiency advantage. Each entry type contains the type element,
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i.e.,EntryKeyFieldProperty instance for each different field. The policy and the advan-

tage with the field types are the same as with the entry types, i.e., theEntryKeyProperty

class takes care of the fact that each field type has only one instance.

The design of the data storage part of the cost database represented above meets the

flexibility and expandability requirements of the database. Adding a new type of entry

or entry field does not require any changes to the database implementation, i.e., the

client only has to create and use the new types. Adding a new type of data included

in the entry field is extremely easy, i.e., the new class should be derived from the base

classEntryKeyData and the whole interface of it should be overloaded.

4.1.2 Filtering Search

Generic search algorithm is one of the main requirements of the cost database. Since

the structure of the database is not stable, the algorithm cannot depend on a specific

field or entry types but it should be flexible and generic supporting any entry type the

client is able to create. TheQuery module, for which a class diagram is depicted in

Fig. 14, realizes such a search algorithm.

The genericness is accommodated already in the highest level whereStrategy design

pattern is applied.CostDatabase class contains a reference to the search strategy that

is used for querying the entries from the database according to a specific search key.

The reference points to an instance of the class derived fromSearchStrategy which is

an abstract base class defining the interface for all different search algorithms. Us-

ing theSetSearchStrategy() function of theCostDatabase object, the client can freely

bring desired algorithm on line, i.e., dynamic changes of the algorithms are possible,

which is one of the advantages of theStrategy pattern. Due to theStrategy pattern,

unnecessary conditional statements are completely avoided. In addition, the pattern

completely hides complex, algorithm-specific data structures from its clients. [18]

The responsibility of theCostDatabase in the queries is only to forward the search

request, i.e., the search key and search type, to the active strategy. Moreover, the

CostDatabase object adds the database entries for theSearchStrategy as the data from

which to search certain entries. The type of the match applied to a specific entry field

is denoted asmatch type. It is represented by classMatchType. The type of the whole

search of an entry is calledsearch type. It is composed of the list of match types,

which, when correctly made, contains a match type for each field of an entry.
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Figure 14. Class diagram of the module implementing the queries to the database.

Principles

One search strategy, classFilterSearch in Fig. 14, is implemented based on the filtering

of unwanted entries out from the results. Entries that do not match with the search key

in an entry field according to the used match type cannot be a match for the query, and

hence can be removed from the results. Continuing this procedure for all fields results

into an entry collection which matches the request. If more than one entry exist in

the results, the client is responsible for enlarging on the collection of the appropriate

entries further.

The division of the search to the smaller subparts is based on theStrategy pattern.

Matcher is the abstract base class, i.e., thestrategy defining the interface for the filters

of single entry fields. Since the type of the filter must be flexibly changed, theStrat-

egy design pattern is extremely appropriate for this context offering the possibility to

change the concrete strategies dynamically [18]. For eachMatchType, an ownMatcher

will be derived to implement specific type of filtering.
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Algorithm 2 FilterSearch::Search(search_key, entries, search_type)
1: createML (list of Matchers) from thesearch_type

2: for all matchersM in theML do

3: M.Filter(search_key, entries)

4: end for

5: return entries

The high-level algorithm of the filtering search is represented in Alg. 2. The search

algorithm takes three parameters as input: the search key, i.e., the characteristics of

an entry to be searched for, the list of entries from which to find the matches, and the

search type. In the beginning of the algorithm, instances of the subclasses ofMatcher

are created according to the requested search type, which is indicated by the list of

MatchType instances. Thereafter, the filtering of eachMatcher object is applied to

the list of database entries using the search key. TheMatcher object itself knows the

field into which apply the filtering. In the end of the represented algorithm, the entries

contain only appropriate database items accepting the search criteria, i.e., search key

with certain search type.

Subalgorithms

The cost database supports four different match types for a field: exact match, superset,

subset and interpolation. Thus, own class derived from the base classMatcher exists

for each of them to implement subparts of the filtering search. They implement a

specific behaviour to filter out entries being inappropriate in a specific field according

to the requested match type.

Queries requiring equal results for a specific field are using a match type called exact

match. The algorithm for filtering according to exact match is represented in Alg. 3.

It checks whether an entry has an equal value with the search key in a specific field or

not.

Superset is a match type for querying greater field value or a superset of the search key

for a specific field. The filtering algorithm is illustrated in Alg. 4. In the following, the

algorithm is explained in detail:

� 1: Scroll through the whole input entry list.

� 4-6: If the entry is not equal or greater than the search key further processing is

not required and the entry can be ignored.
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Algorithm 3 ExactMatch::Filter(search_key, entries)
1: for all entriesE in entries do

2: E_field = E.KeyFieldOfType(Matcher::field_type)

3: if E_field.IsEqual(search_key) then

4: results.Add(E)

5: end if

6: end for

7: entries = results

� 7: The results already found by the algorithm are browsed through.

� 8-10: The result entry is not handled furthermore if it does not belong to the

same group of entries, i.e., has equal field values in each field except in the key

field for which the superset algorithm is applied to.

� 12-13: If the current entry is smaller than the current result entry, the resulting

entry can be deleted from the results list.

� 14-15: If the current entry is greater than the current result entry, the result

collection already contains a better alternative than the current entry which will

not be added to the results later on.

� 18-20: If the results do not contain an entry of this group, it will be added. The

entry will be added also if it is the best entry in this group that is found so far.

� 22: Finally, the resulting entries are assigned into the output.

Subset search type is used for finding smaller field value or a subset of the search

key for a specific entry field. The principles and the algorithm for subset filtering are

the same as for the superset. However,IsSmaller() function calls are replaced with

IsGreater() calls and vice versa.

The flexibility requirements for the database queries demand that linear approximation

of the statistics should be possible to use if the behavior of a hardware resource for a

certain characteristic is accordant with that. Therefore, interpolation match type, for

which the filtering algorithm is depicted in Alg. 5, exists. The algorithm is much more

complicated than for other search types due to the genericness requirements of the

search algorithm and complexity of the interpolation.

The filtering algorithm in the interpolation is composed of two phases. In the first phase

(lines 1-26),entry pairs composed of a smaller and a greater entry are constructed
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Algorithm 4 SuperSet::Filter(search_key, entries)
1: for all entriesE1 in entries do

2: add_entry = true

3: E1_field = E1.KeyFieldOfType(Matcher::field_type)

4: if !(E1_field.IsEqual(search_key) or E1_field.IsGreater(search_key)) then

5: continue

6: end if

7: for all entriesE2 in results do

8: if !OnlyThisFieldDiffers(Matcher::field_type, E2, E1) then

9: continue

10: end if

11: E2_field = E2.KeyFieldOfType(Matcher::field_type)

12: if E1_field.IsSmaller(E2_field) then

13: results.Delete(E2)

14: else if E1_field.IsGreater(E2_field) then

15: add_entry = false

16: end if

17: end for

18: if add_entry then

19: results.Add(E1)

20: end if

21: end for

22: entries = results

from the entry list given as an input for the algorithm. Both the smaller and the greater

belong to the same group of entries. The smaller entry in the pair embodies an entry

which has a smaller value than the search key in the field for which the search is

applied to. The greater entry has similar meaning, i.e., representing greater value. The

smaller entry of a pairP is represented asP.smaller and the greater entry asP.greater

in Alg. 5. In the second phase (lines 27-34), each pair is combined together to form

one entry having linearly approximated area, power and timing statistics.

In the following, the whole interpolation algorithm represented in Alg. 5 is explained

in detail line by line:

� 1-4: The creation of the entry pairs starts by scrolling through the whole input

entry list. Inside that, the pairs already found are browsed through.
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Algorithm 5 Interpolation::Filter(search_key, entries)
1: for all entriesE in entries do

2: new_pair = true

3: E_field = E.KeyFieldOfType(Matcher::field_type)

4: for all pairsP in pairs do

5: if !OnlyThisFieldDiffers(Matcher::field_type, P.smaller,E) then

6: continue

7: end if

8: if E_field.IsEqual(search_key) then

9: P.smaller = E

10: else if E_field.IsSmaller(search_key) andE_field.IsGreater(P.smaller)then

11: P.smaller = E

12: else if E_field.IsGreater(search_key) andE_field.IsSmaller(P.greater)then

13: P.greater = E

14: end if

15: new_pair = false

16: break

17: end for

18: if new_pair then

19: if E_field.IsEqual(search_key) or E_field.IsSmaller(search_key) then

20: pair.smaller = E

21: else

22: pair.greater = E

23: end if

24: pairs.Add(pair)

25: end if

26: end for

27: for all pairsP in pairs do

28: if P.smaller.KeyFieldOfType(Matcher::field_type).IsEqual(search_key) then

29: results.Add(P.smaller)

30: else if P.HasBothElements()then

31: results.Add(Combine(P.smaller,P.greater,search_key)

32: end if

33: end for

34: entries = results
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� 5-7: The pair is not handled furthermore if it does not belong to the same group

of entries.

� 8-14: The current entry pair is updated if the current entry is better than the

smaller or the greater entry in the pair.

� 15: If the algorithm got through the test on line 5, new entry pair is not required

after the loop since a pair exists already for this group.

� 16: The loop can be finished, since only one pair exists for a certain group.

� 18-26: If an entry pair does not exist for the current entry, it has to be created.

Current entry is assigned for the smaller or greater entry of the new pair, depend-

ing on whether it is smaller or greater than the search key.

� 27: Each pair that were found are scrolled through.

� 28-29: If the pair is composed of an entry that is equal to the search key, it is

added to the results without any treatment.

� 30-31: If both smaller and greater entry exist in the pair, they will be combined

into one entry. Otherwise, the pair is inappropriate and it will be ignored.

� 34: Finally, the resulting entries are assigned into the output.

The combination of the smaller and greater entry is made by linearly approximating

area, power, and timing according to the difference of the entry fields from the search

key. For example, if the bit width requested is 20 and the smaller entry has 16 as the

bit width and the greater 32, the requested bit width is 25% of the total gap between

the bit widths. If the area of the smaller entry is 200 gates and 350 for the greater,

the requested are will be 237,5 gates. Going into the details, the functionEntryKey-

Data::Coefficient() in the Entry module returns the coefficient required by the linear

approximation of the area, power, and timing. In the example above, it would have

returned 0.25.

Since the power values exist for different utilizations of a hardware component, the

combination of the power is slightly more complicated. The requested entry contains

power value for each utilization in the both smaller and the greater entry. For example,

if one entry contains power values for utilizations 0,1; 0,6 and 0,9, and another one for

0,2 and 1,0, the entry obtained by combining these two entries would contain power

data for utilizations 0,1; 0,2; 0,6; 0,9 and 1,0. Power for each utilization is obtained

similarly to the area and timing.
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Optimizations

The algorithm represented in Alg. 2 can be optimized to make the queries much more

efficient. Two optimization methods have been used in the optimized version repre-

sented in Alg. 6:cache andquick filtering.

The TTA processors have several similarities. All the buses of the processor configura-

tion are usually identical as well as RFs, and input and output sockets. FUs have more

differences than the other resources since they support different operation sets. The

purpose of the database is to provide statistics for the estimator, which evaluates the

costs of a processor configuration. Since the processor is composed of several similar

resources, the database encounters identical query requests. Thus, filtering search sup-

portscache, i.e., results of the previous queries can be quickly used if identical search

is requested [19]. In the algorithm depicted in Alg. 6, the cache appears in the begin-

ning (lines 1-3), where the cache is checked whether it already contains the results for

this query. In the end of the algorithm, i.e., on line 11, the results of the new query are

added to the cache.

However, the size of the RF as well as the number of read and write ports of the

RF may vary especially in the design space explorer. In addition, the fanin of the

input sockets and fanout of the output sockets contains also some variations in the

connectivity optimization of the explorer. Thus, the advantage of the cache cannot

always be fully utilized. Nevertheless, it has a significant decreasing impact on the

query times of the application.

The cost database usually consists of several hundreds, or even thousands of entries.

Only a few of them satisfies the requirements of the search request, and most of them

are completely inappropriate when quickly checking their properties. In addition, per-

forming filtering of the most complex match types for the huge entry collections takes

a quite long time. Due to these facts, an optimization calledquick filtering is used for

the database queries. It includes a filtering of unwanted entries out of the resulting

entry collection before calling the actual filtering. In the Alg. 6, lines 5-7 depicts the

usage of the quick filtering, which is performed for eachMatcher instance before any

of the actual filterings take place in line 9. The speed of a quick filter call must be

in order of growthO(n), wheren is the number of entries passed to the quick filter

algorithm. The filtering itself can be of any order of growth, since it must result in an

entry collection satisfying the requirements of the search request.

The filtering algorithms represented earlier are divided into quick filtering and actual
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Algorithm 6 FilterSearch::Search(search_key, entries, search_type)
1: if cache.Check(search_key, search_type) then

2: return cache.Entries(search_key, search_type)

3: end if

4: createML (list of Matchers) from thesearch_type

5: for all matchersM in theML do

6: M.QuickFilter(search_key, entries)

7: end for

8: for all matchersM in theML do

9: M.Filter(search_key, entries)

10: end for

11: cache.Add(search_key, search_type, entries)

12: return entries

filtering algorithms for the optimized version of the filtering search. The filtering of

exact match isO(n) in the order of growth. Thus, it can be moved to the quick filtering

function as it is, and the actual filtering remains empty. In the interpolation, an entry

cannot be removed from the results without having information about other entries.

Hence, nothing can be done in the quick filtering phase and the filtering algorithm is

the same as it is without quick filtering. Some filtering can be done for superset search

in the quick filtering phase. Each entry containing equal or greater value in the field

under interest must be left in the results and other entries can be removed as illustrated

in Alg. 7. The algorithm does not work if it removes entries with smaller value from

the results, since for some data types, such as sets, a value may be neither smaller nor

greater than another value.

The filtering algorithm of the superset search can be slightly modified since the algo-

rithm can trust that the quick filtering represented in the Alg. 7 is already run before

the filtering itself is executed. Thus, each entry in the input is equal or greater than

the search key and lines 4-6 of the superset algorithm represented in Alg. 4 can be

removed. Furthermore, it can be noticed that comparison with the search key is not

needed anymore, since each entry is equal or greater than the search key after the

quick filter call. Similar changes can be done for subset search when quick filtering is

used.

In general, the quick filtering speeds up the queries a lot, since the size of the entry col-

lection passed to the filtering itself reduces significantly. Of course, in a very specific

case the query time may increase because of quick filtering. For example, if an entry
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Algorithm 7 SuperSet::QuickFilter(search_key, entries)
1: for all entriesE in entries do

2: E_field = E.KeyFieldOfType(Matcher::field_type)

3: if E_field.IsEqual(search_key) or E_field.IsGreater(search_key) then

4: results.Add(E)

5: end if

6: end for

7: entries = results

having the greatest value of the whole database on a field for which subset match type

is applied, is searched, the quick filtering algorithm of the subset is run and no entry is

removed from the results.

Analysis

The filtering algorithm and its subalgorithms are extremely generic and flexible. They

are completely independent of the entry types, field types of the entries and data types

of the entry fields. Thus, these properties of the database can be varied by the client

as much as is required and the search algorithm still works. As an example, after the

implementation of the cost database was finished, a new entry type, i.e., output sockets

had to be added to the database. The addition was fast, easy, and completely trivial

due to the genericness of the database design. Output sockets consists of two fields,

namely fanout and cycle time. Adding this data into the database did not had any effect

on theQuery module of the cost estimator. Changing the estimation process to support

new entry type took only about one work day.

Due to the general interface of the data, the search algorithms can handle any kind of

data. Thus, the database entries can contain any kind of data if it implementsEntryKey-

Data interface. However, a filtering algorithm may require some new, search-specific

interfaces. For example, interpolation requiresEntryKeyData::Coefficient() function,

which is not required by other filtering algorithms. Nevertheless, operation set type

cannot implement this function, which implies that interpolation cannot be applied to

the fields containing operation set type of data. If the client tries to use interpolation

match type for operation set type of data, a run-time error will occur preventing the

search algorithm from giving incorrect and meaningless results. On the other hand,

the whole comparison interface of theEntryKeyData class is specific for the queries.

IsEqual() function is required by the exact match filtering as well as the other match
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types. In addition,IsSmaller() andIsGreater() functions are needed to make superset

and subset filterings possible. However, these three functions can be considered as the

basic set for making any kind of requests to the database.

The search type is specified by a list ofMatchType objects. The supported match types

are exact match, superset, subset and interpolation. Any combination of them can be

used to form the search type. Particularly, multi-dimensional interpolation is flexibly

possible. However, some client may be interested in any field values, i.e, to not filter

any entries out of the results according to a specific field. This functionality can be

obtained by using a special match type calledmatch all.

The genericness and flexibility of the queries gives a huge advantage since the format

of the database is not static. Nevertheless, it has always the drawback of being a bit

inefficient. If the efficiency of the database queries becomes an issue, faster algorithms

need to be considered. More speed can be achieved, for example, by making assump-

tions of the entry types or field types of the entries. The filtering search algorithm

does not perform any checks for the values of other fields but the field under filtering.

Adding more dependencies between the fields can give some efficiency advantage to

the exclusion of genericness.

If the algorithms implemented do not satisfy some requirements, they can be easily

changed. The whole filtering algorithm can be changed by deriving a new algorithm

from the interface classSearchStrategy and by changing the client to use it. Moreover,

adding a new match type is trivial. Filtering search can support the new match type by

deriving a new class from theMatcher base class.

4.2 Application

The hardware cost estimator is responsible for calculating the costs of a processor

configuration for a given application. The class diagram of the estimator is illustrated

in Fig. 15. Application is a module which implements the actual evaluation utilizing

the services provided byCostDatabase class. Since the estimator is integrated into the

MOVE framework described in Chapter 2, theApplication is implemented as an old C-

style module taking advantage of the old code as much as possible. Thus, the structure

of the old C-style estimator is not changed but it is only converted to use the new,

flexible and extendable cost database. Implementing a flexible client for the database

was not the purpose. Instead, the effort has been put on the estimation principles as

well as on the design of the cost database.
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Figure 15. Class diagram of the hardware cost estimator.

The functionality implemented in theApplication consists the following steps:

1. Read the processor configuration to be evaluated.

2. Create entry types, i.e.,EntryKeyProperty instances, and entry field types, i.e.,

EntryKeyFieldProperty instances, for the cost database.

3. Read the cost database.

4. Create and assign a search strategy, i.e.,FilterSearch instance, to the cost

database.

5. Create the search type of the queries, i.e.,MatchType list, for each entry type.

6. Compile and simulate the application to obtain execution time and utilization

statistics of the hardware resources.

7. Evaluate the area and power of each hardware resource.

8. Sum up the costs of each resource.
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9. Output the results.

Steps 2-5 are actions required by the cost database from its clients, before the database

queries can properly take place. Steps 1-6 prepare the actual estimation which is per-

formed in steps 7 and 8. Step 7 includes the evaluation of FUs, RFs, buses, input and

output sockets, and control logic. An evaluation of a hardware resource can be divided

into steps as follows:

1. Obtain the type of an entry, i.e.,EntryKeyProperty instance, to be evaluated.

2. Create the search key, i.e.,CostDBEntryKey instance containingEntryKeyField

objects constructed as follows:

(a) Obtain the type of an entry field, i.e.,EntryKeyFieldProperty instance.

(b) Create an instance of the appropriate class implementing the interfaceEn-

tryKeyData.

(c) CreateEntryKeyField object.

3. Perform a database query.

4. Process the resulting entry collection furthermore, i.e., select the correct entry

from the results if more than one exist.

5. Enlarge on the statistics further if required.

6. Store the results.

Steps 1 and 2 prepares for the database query performed in step 3. Steps 4-6 includes

client-specific further processing of the results obtained from the database. In step

4, the client can freely choose an entry from the results if there are more than one

entry. In the search algorithm, the entries are chosen based on the characteristics.

However, the client can choose an entry from the results using any decent principle

based on the characteristics or statistics. For example, an FU query might give as a

result multiple entries which support different operation sets. For example, the smallest

area or the smallest power consumption can be chosen depending on which properties

are preferred.



5. PERFORMANCE EVALUATION

The evaluation principles of the proposed hardware cost estimator were represented

in Chapter 3 together with the exact procedure to obtain evaluations on the chip area,

power consumption and timing. Meanwhile, Chapter 4 described the implementation

of the estimator.

The estimator is based on the database of the costs of different hardware resources.

This approach has several advantages. Changing the technology is trivial since only

a new database has to be created for the new technology. The actual estimator does

not need to be modified at all. For example, the user might want to change the bus

type from tri-state buffers to and-or gates. The statistics of the interconnection entries,

i.e., buses, and input and output sockets have to be replaced with the new statistics

representing the costs of these resources when the buses are composed of and-or gates.

Similarly, if the user finds a more efficient implementation for an FU performing mul-

tiplication, only the statistics of the multiplier FU entries have to be replaced with the

statistics of the new implementation. Furthermore, adding an application-specific FU

into the target processor does not create more problems than addition of any other re-

source. The evaluation will handle a user-defined FU when the database includes the

statistics for it.

This evaluation approach based on the cost database offers, in theory, possibilities for

better accuracy than the alternatives based on mathematical modeling. The first phase

in the mathematical modeling is to collect data about the behavior of the resources.

Thereafter, equations are forced to fit into the data as well as possible. Inaccuracies

always exist at some points of the model. In our database approach, the collected data

is directly put into the database from which the estimator obtains it. Of course, the

collected data cannot represent the values in all different cases, but they have potential

for very accurate results overall.

However, the estimator cannot be considered as a significant alternative for the target

processor evaluation without analyzing its properties. First, the accuracy of the results

has to be verified which is done in Section 5.1. Secondly, the speed of the estimator
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Table 3. Hardware resources of the architectures for experiments.

Resource A B C

Function units 8 6 5

Register files 8 8 6

Registers 58 64 14

Bus 12 6 2

has to be proven to satisfy the efficiency requirements of the design space explorer.

Section 5.2 describes efficiency analysis of the estimator.

5.1 Accuracy Analysis

The accuracy of the proposed estimator was verified by evaluating several processor

configurations for one application, two-dimensional (2-D) 8�8 discrete cosine trans-

form (DCT). First of all, each configuration was evaluated in terms of area and power

using the Synopsys Design Compiler [15]. The clock frequency was 100MHz during

the evaluation. For the power analysis, gate-level simulation was performed utilizing

ModelSim [20] to obtain gate-level activities. Hence, the power analysis of the Design

Compiler is more reliable. Thereafter, Synopsys Design Compiler was used to produce

a cost database for the proposed estimator which was, finally, invoked to evaluate each

configuration. The results of the Design Compiler were used as references against the

results of our cost estimator.

Figures 16 and 17 illustrate the experimental results as proportions of the area/power

of FUs, RFs, interconnection network (IC) containing buses, and input and output

sockets, control logic (Cntrl), and other elements such as buffers between intercon-

nection elements. The results are in couples, from which the left-hand result is the

reference whereas the right-hand experiment utilizes the proposed hardware cost esti-

mator. Three different architectures were evaluated using three different connectivities

for each of them: large (L), medium (M) and small (S). Large connectivity indicates

that the interconnection network is fully connected whereas small connectivity means

minimum number of connections required for the compilation to succeed. Medium

connectivity indicates that the number of connections between the buses and sockets is

quite close in the middle of the number of connections of the large and small connec-

tivities. The number of different hardware resources used in the evaluated architectures

are represented in Table 3.
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Figure 16. Area of the references and the estimator. The reference is represented with the

left-hand bar and the estimate with right-hand one.

In the aggregate, the accuracy of the area results depicted in Fig. 16 are excellent

since the average error is only 4,2% and the maximum error 8,6%. The evaluation of

the FUs and RFs correspond to the references as well as the control logic. The only

notable inaccuracy is caused by the interconnection network due to the problems in the

database creation, i.e., the area of the buses in the database does not correspond to the

synthesized bus area.

Power results are illustrated in Fig. 17. The power consumption of the FUs and RFs

evidence satisfactory accuracy. Problems arise in the interconnection network as well

as in the control logic. The estimator underrates the power consumption of the in-

terconnection whereas the power of the control is overestimated a lot, due to the fact

that activities of more fine-grained items than the database includes have significant

effect on the results, and they are cumbrous to accommodate in the evaluation. In ad-

dition, perusing the results indicates that the power consumed by the buses includes

the inaccuracy of the interconnection network due to the problems in the database cre-

ation. The impreciseness of the control logic estimates clearly indicates that our simple

model does not work for the power estimation of the control. One problem are inter-

connection buffers that consume some extra power which is not taken into account in

the estimation process. Thus, the average error in the total power is 16% whereas the

maximum error is 27%.
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Figure 17. Power consumption of the references and the estimator. The reference is repre-

sented with the left-hand bar and the estimate with right-hand one.

5.2 Efficiency Analysis

The efficiency of the estimator was tested by evaluating a huge processor configuration

for a given application utilizing an extensive cost database. The only significant ineffi-

ciency of the estimator can be caused by the database queries since other computation

included in the estimator is trivial and fast. Thus, the efficiency analysis is focused on

the database queries. In addition, the usefulness of the optimizations, i.e., cache and

quick filtering, were verified.

The speed of the estimator mostly depends on the following issues related to the

database queries:

� The number of entries in the cost database.

� The number of database queries, which depends directly on the number of hard-

ware resources in the target processor to be evaluated.

� The speed of one query to the database.

� Internal structure of the search type, i.e., the order of match types in the list since

the filtering of the fields will be done in that order.

The first issue cannot be optimized by the search algorithm implementation. The cache

reduces the number of queries that has to be performed thoroughly, hence decreasing

the time consumed for the second point. The third issue is optimized by quick filtering

since it reduces the size of the entry collection from which to search using complex
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filtering algorithms. In addition, quick filtering reduces the size the fourth problem

as a side effect. Applying complex filtering algorithm on a huge entry collection is

a time consuming step. This happens especially when the filtering is applied to the

first field of an entry since the number of entries is not decreased at all. Thus, quick

filtering reduces this problem by decreasing the size of the entry collection passed to

the filtering of the first field. However, statistics about the cost database and the target

processor configuration might be used to order the match types in an effective way

inside the search type.

Section 5.2.1 describes the target processor configuration and the cost database used

in the efficiency tests as well as the application. In Section 5.2.2, the results of the

efficiency tests are represented.

5.2.1 Data Used in Efficiency Tests

A huge target processor configuration and an extensive cost database were used in

the efficiency evaluations to obtain the worst case execution time of the estimator.

Of course, the user may always have more entries in the database and the processor

configuration may be more awkward from the estimator’s point of view. The data

used in the efficiency tests should still be as awkward as possible in this size of target

processor category.

The benchmark used in the efficiency evaluations of the estimator was 8� 8 DCT.

However, the application used in the evaluations is an insignificant factor when verify-

ing the efficiency of the estimator. Of course, the compilation and the simulation time

of the application affects on the execution time of the estimator since they are required

by the power consumption analysis of the estimator to obtain the utilizations of hard-

ware resources. Nevertheless, in the experiments the compilation and the simulation

times are excluded since the estimator cannot optimize them at all.

The processor configuration used in the efficiency evaluations was tried to make awk-

ward from the database query’s point of view. This is achieved by using hardware

resources composed of different characteristics as much as possible. The configu-

ration contains the resources represented in Table 4, which describes the number of

hardware resources for each resource type together with the number of resources with

different characteristics. In addition, the minimum number of different characteristics

in the configuration is given. The number of resources in the minimum configuration

is equal with the configuration used in the tests.
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Table 4. Statistics about the target processor configuration used in the tests.

Number of Different Diff. res.
Resource

resources resources in Original

FU 28 13 7

RF 8 5 1

Bus 20 20 1

Input socket 72 8 1

Output socket 44 16 1

Total 172 62 11

Without any optimization the number of required database queries is directly propor-

tional to the number of resources. From the cache optimization’s point of view the

number of different characteristics is a significant factor, since it is directly propor-

tional to the number of database queries required during the evaluation. In this target

processor, this number is quite huge compared to normal case. For example, in the

original processor configuration the interconnection network is fully-connected. Thus,

each bus has equal number of connections as well as both input and output sockets.

The cost database was composed of several entries for each hardware resource type.

Table 5 illustrates the number of entries included in the database for different resource

types as well as the number of different values for each characteristic of them. The

entries gather possible resources really extensively up to the processor configuration

used in the efficiency tests. For example, buses have fanin from 0 to 45, the cycle time

exist for 2ns, 3ns, 5ns, 7.5ns, and 10ns, and the bit width has values 16, 32, and 64.

Statistics exist in the database for the entries consisting of any combination of these

characteristics, hence the number of bus entries being 690 (� 46�5 �3). An exception

from other characteristics is the latency of an FU. It is not varied through certain values

while creating FU entries since different operations support very different latencies. In

average, 1.5 different values exist for each combination of other characteristics. This

indicates that every second operation has implementations only for one latency and

every second for two different latencies. In addition, the write ports of a RF are not

varied over the size of the RF. Thus, 3.4 different values exist in average for each

combination of other characteristics.
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Table 5. Number of entries for different resource types in the cost database together with the

number of different values for each characteristic of them.

Input Output
Characteristic FU RF Bus

socket socket

Cycle time 7 1 5 7 8

Bit width 3 3 3 3 -

Operations 28 - - - -

Latency 1.5 - - - -

Fanin - - 46 19 -

Fanout - - - - 20

Size - 10 - - -

Read ports - 4 - - -

Write ports - 3.4 - - -

Total 924 408 690 399 160

5.2.2 Efficiency Tests

The efficiency tests were carried out on 3GHz Pentium 4 machine with 1GB of RAM

as well as on 600MHz Pentium 3 machine with 256MB of RAM. The estimator was

invoked utilizing four different versions of filtering search. First of all, an unoptimized

version was used after which only quick filtering optimization was applied. Thereafter,

filtering search used cache to optimize the queries, and finally, both quick filtering and

cache were in use. For each version, the internal order of match types was set to the

best possible order, i.e., the fields were filtered in the order that leads the query into

the fastest possible execution time. Furthermore, the order was changed to the worst

possible to obtain maximum execution time of the estimator with the specified input

data.

The execution times of the estimator in the tests are shown in Table 6. The execution

time taken by the compilation and simulation required by the estimation are excluded.

The execution times are averages of five completions of the estimator to reduce the

variation caused by the changes in the load on the test machine. The results clearly

indicate that optimizations reduce the execution time really significantly in the worst

case. Moreover, the best case time is also decreased about 40% on both machines

which is a significant improvement. It is important to notice that the best and the worst

case are equal when the optimizations are used.

If the order of match types in the search type were always the best, the optimizations
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Table 6. Execution time of the estimator.

P4 3GHz P3 600MHz
Optimizations

best worst best worst

Unoptimized 1.3s 4.6s 5.0s 19.0s

Quick filtering 1.2s 1.4s 4.5s 5.4s

Cache 0.8s 2.4s 3.3s 10.0s

Optimized 0.8s 0.8s 3.0s 3.0s

would not be needed. In addition, if all the users had powerful machines, the optimiza-

tions would be unnecessary. However, the worst case execution time without optimiza-

tions on Pentium 3 machine is quite long. Thus, the optimizations are really needed. In

addition, the size of the database or processor configuration may increase, whereupon

the optimizations would be required to keep the estimation time under control.

Even though the estimation time is only 19 seconds in the worst case tested, the ad-

vantage achieved with optimizations, i.e., 16 seconds down to 3 seconds, is significant

if the design space explorer is considered. It is not unusual that the explorer evaluates

two thousand configurations. Speedup of 16 seconds in one evaluation would mean

8,9 hours faster execution of the explorer.



6. CONCLUSIONS

In this thesis, a hardware cost estimation procedure for transport triggered architec-

tures was described together with an implementation of the hardware estimator into

the MOVE framework. The estimator creates the statistics of the target processor for

a given application in terms of chip area, power consumption and timing. Function

units, register files, buses, input and output sockets, and the control logic of the target

processor are evaluated, whereas both the instruction and data memory are excluded

from the evaluation. The main purpose of the proposed estimator was to improve the

accuracy and the flexibility of the old estimator of the MOVE framework. Both accu-

racy and flexibility was achieved by isolating the area, power, and timing information

of the hardware resources into a cost database. The estimation procedure was based on

this database from which the statistics of each resource were obtained for evaluating

the costs of the entire target processor. The estimator uses the compiler and simula-

tor of the MOVE framework to obtain utilization statistics of hardware resources for

achieving more accurate power evaluation.

The cost database improves dramatically the flexibility of the estimator. Changing the

technology is of major importance, and hence it is done extremely easy in the proposed

estimator. Only the database has to be replaced with a new database that is generated

for the new technology. The actual estimator is independent of the technology.

From the software systems’s point of view, the estimator has to be done in a flexible

and expandable way to make future modifications possible since the actual estimation

procedure might slightly change. The most important part in the software implemen-

tation was to design the data structures and search algorithm for the cost database in

a flexible and expandable way. This was achieved by taking advantage of the object-

oriented programming paradigm. The designed search algorithm is extremely flexible.

It is based on filtering unwanted database entries out of the results by one entry field at

a time, i.e., entries that do not meet the search criteria in a specific entry field will be

removed from the resulting entry collection. Thus, when all the fields are handled, the

resulting entry collection contains only entries that are valid according to the search
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request. The algorithm does not depend on entry or field types, i.e., the cost database

can include any type of entries and entry fields without requiring any changes in the

algorithms or the data structures of the cost database implementation. Only their usage

has to be changed.

The accuracy of the estimator was verified by comparing the results of the Synopsys

Design Compiler and the proposed estimator. Three different target processors were

evaluated with three different interconnection networks for each of them. The appli-

cation in the evaluations was 8� 8 discrete cosine transform. The accuracy of the

estimator is superb in area. The obtained power evaluations are quite satisfactory even

though inaccuracies exist in the interconnection network as well as in the control logic.

Since the power consumption is much harder to evaluate than the area, the results of

the estimator can be considered fairly good. Thus, the high-level estimation procedure

has proven to be an interesting alternative.

Since an estimation includes several database queries, the efficiency of the estimator

has to be verified using experimental tests. The application in the tests was 8�8 DCT,

and the target processor and the cost database were awkward for estimator from the

efficiency’s point of view. The effect of the optimizations used in the database queries,

i.e., cache and quick filtering, were also tested. Each test was carried out on 1GHz

Pentium 4 as well as on 600MHz Pentium 3 machine. The speed of the estimator is

outstanding since the estimation takes less than a second on Pentium 4 machine and

about three seconds on Pentium 3. In addition, the effect of the optimizations of the

database queries is significant.

Even though the experiments evidence great accuracy, the estimator can be improved

a lot. First of all, the inaccuracies of the interconnection network should be fixed by

finding out the exact items included in the interconnection using commercial synthesis

tools. Secondly, alternative methods have to be considered and experimented for the

evaluation of the control logic. In general, current model seems to be completely

inaccurate.

Accuracy verification of the proposed hardware cost estimator has to be done more

extensively. Several experiments have to be carried out with varying applications,

cycle times and target processors. Thereafter, a completely new issue, longest path

analysis will be researched and implemented to obtain the maximum clock frequency

the processor can support.
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Appendix A

EXAMPLE COST DATABASE

FU

oper ld_ldh_st_sth

data 32

clk 20

latency 3

area 909.000000

delay 3.99

power 0.1 138.9168 uW

power 0.8 271.2466 uW

oper ld_ldh_st_sth

data 32

clk 4

latency 3

area 909.750000

delay 3.64

power 0.1 695.6682 uW

power 0.5 1.0190 mW

power 0.9 1.3578 mW

oper mul

data 32

clk 15

latency 3

area 4167.000000

delay 5.36

power 0.1 520.1469 uW

power 0.9 1.2272 mW

oper mul

data 32

clk 12.5

latency 2

area 3115.750000

delay 9.05

power 0.1 192.4314 uW

power 0.8 1.0154 mW

oper mul

data 32

clk 5

latency 3

area 4188.250000

delay 4.55

power 0.1 1.5584 mW

power 0.8 3.7165 mW

oper shl_shr

data 32

clk 12.5

latency 1

area 424.500000

delay 0.999

power 0.1 72.1206 uW

power 0.8 297.2523 uW
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oper and_ior_xor

data 32

clk 10

latency 2

area 771.000000

delay 2.65

power 0.1 127.4627 uW

power 0.4 306.3020 uW

power 0.9 539.0090 uW

oper eq_gt

data 32

clk 12.5

latency 2

area 607.500000

delay 3.12

power 0.1 88.4481 uW

power 0.8 348.3014 uW

oper add_sub

data 32

clk 7.5

latency 1

area 1397.750000

delay 3.26

power 0.1 218.2494 uW

power 0.9 1.0837 mW

RF

size 4

rd 1

wr 2

data 32

clk 4

area 1664.000000

delay 3.82

power 0.1 976.9204 uW

power 0.9 3.1914 mW

size 4

rd 2

wr 2

data 32

clk 4

area 2090.000000

delay 3.82

power 0.1 1.1272 mW

power 0.8 3.9484 mW

size 6

rd 2

wr 2

data 32

clk 4

area 2925.000000

delay 3.83

power 0.1 1.3148 mW

power 0.9 4.6454 mW

size 8

rd 2

wr 3

data 32

clk 4

area 4641.500000

delay 3.83

power 0.1 2.4534 mW

power 0.3 3.4283 mW

power 0.8 7.0832 mW

size 16



58

rd 2

wr 1

data 32

clk 4

area 5942.750000

delay 2.80

power 0.1 1.4219 mW

power 0.8 7.6209 mW

size 32

rd 3

wr 3

data 32

clk 4

area 18288.250000

delay 3.84

power 0.1 7.6193 mW

power 0.8 18.4731 mW

BUS_WRITE

fanin 8

data 32

clk 2

area 331.500000

delay 1.96

power 1.0 3.3075 mW

fanin 17

data 32

clk 2

area 675.250000

delay 1.97

power 1.0 9.2625 mW

fanin 7

data 32

clk 5

area 290.250000

delay 4.56

power 1.0 1.2162 mW

fanin 45

data 32

clk 5

area 1800.000000

delay 4.98

power 0.1 2.8745 mW

power 1.0 9.6934 mW

fanin 22

data 32

clk 7.5

area 780.000000

delay 6.46

power 1.0 3.1948 mW

fanin 37

data 32

clk 10

area 1428.000000

delay 6.36

power 1.0 3.9584 mW

INPUT_SOCKET

fanin 2

data 32

clk 3.0

area 64.000000

delay 0.999

power 1.0 285.2014 uW
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fanin 5

data 32

clk 4.0

area 181.250000

delay 3.98

power 1.0 567.3033 uW

fanin 10

data 32

clk 0.8

area 3016.250000

delay 0.999

power 1.0 27.5040 mW

fanin 20

data 32

clk 2.0

area 1179.250000

delay 2.00

power 1.0 5.0206 mW

OUTPUT_SOCKET

fanout 3

clk 3.75

area 3.750000

delay 0.25

power 1.0 3.8770 uW

fanout 7

clk 6.0

area 8.750000

delay 0.34

power 1.0 9.0082 uW

fanout 20

clk 6.0

area 25.000000

delay 0.64

power 1.0 26.7752 uW

fanout 20

clk 0.9

area 27.750000

delay 0.54

power 1.0 30.2229 uW

CNTRL

connectivity 0.21

area 8.31967213115

power 0.0105257611241 mW

connectivity 0.92

area 10.7053415061

power 0.0120907180385 mW


