
TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Electrical Engineering

JAAKKO SERTAMO

PROCESSOR GENERATOR FOR TRANSPORT TRIGGERED
ARCHITECTURES

Master of Science Thesis

Subject approved by Department Council

20th Aug, 2003

Examiners: Prof. Jarmo Takala

Prof. Markku Kivikoski

PREFACE

The work for this thesis was carried out in Institute of Digital and Computer Systems of

Tampere University of Technology in 2002-2003 as a part of the Flexible Design Met-

hods for DSP Systems (FlexDSP) project funded by the National Technology Agency.

I would like to express my sincere gratitude to my thesis supervisor Professor Jarmo

Takala for his guidance and valuable tips for the thesis.

I would also like to thank my workmates at institute of digital and computer systems for

their company and assistance during the last two and half years I have been working at

the institute.

Finally, I wish to thank my parents for their support throughout my studies.

Tampere, September 15, 2003

Jaakko Sertamo

Männikönkatu 3 A 12

33820 Tampere

p. 040 5937266

jaakko.sertamo@tut.fi

TABLE OF CONTENTS

Abstract ��� 4

Tiivistelmä ��� 6

List of Abbreviations and Symbols ��� 9

1. Introduction ��� 11

2. Transport Triggered Architectures ��� 14

2.1 From VLIW to TTA . 15

2.2 Hardware Aspects . 16

2.2.1 Interconnection Network . 16

2.2.2 Transport Pipelining . 18

2.2.3 Functional Units and Register Files 18

2.3 Software Aspects . 21

2.4 Realizations . 22

2.4.1 32-bit General-Purpose Processor 22

2.4.2 Application-Specific Processor for Navigation Receiver 24

3. MOVE Framework ��� 26

3.1 Architecture Template . 27

3.2 Design Space Explorer . 29

3.2.1 Resource Optimization . 30

3.2.2 Connectivity Optimization . 30

3.3 Software Subsystem . 31

3.4 Hardware Subsystem . 32

Table of Contents 3

3.4.1 MOVE Estimator . 32

3.4.2 MOVE Processor Generator 33

4. New Processor Generator ��� 37

4.1 Requirements . 37

4.1.1 General Requirements . 37

4.1.2 Interfaces . 38

4.1.3 Modularity . 40

4.1.4 Support for Different Interconnection Structures 40

4.2 Implementation . 41

4.2.1 Processor Organization . 42

4.2.2 Interconnection Network . 46

4.2.3 Control Unit . 49

4.3 Functional Unit Library . 52

5. Implementation Experiments ��� 56

5.1 Performance Evaluation . 56

5.1.1 Full Connectivity . 59

5.1.2 Optimized Connectivity . 61

5.2 Clock Gating Results . 62

5.3 Bus Structure Comparison . 64

5.4 Discussion . 67

6. Conclusions ��� 69

Bibliography ��� 71

Appendix A Functional Unit Template

Appendix B Register File

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Degree Program in Electrical Engineering

Institute of Digital and Computer Systems

Sertamo, Jaakko Ilmari: Processor Generator for Transport Triggered Architectures

Master of Science Thesis: 73 pages, 5 appendix pages

Examiners: Prof. Jarmo Takala and Prof. Markku Kivikoski

Funding: The National Technology Agency

Department of Electrical Engineering

October 2003

Keywords: transport triggered architecture, electronic design automation

Application-specific instruction set processors can be used as building blocks of mo-
dern system-on-chips, increasing the design flexibility with programmability. Compared
to fixed-processor cores, instruction-set optimized processors also provide significantly
increased computational performance and energy efficiency. A wide range of architec-
tural, software and implementation skills are necessary in the design of an application-
specific CPU. The MOVE framework, a set of non-commercial software tools provide
a design environment for fast semi-automatic design of custom processors. The MOVE
framework consists of three components. Design space explorer automates the search
of the optimal configuration of the processor for a given application. Hardware subsys-
tem is responsible for estimating the cost of the processor configuration and generating
hardware description language representation of the processor design. Software subsys-
tem compiles high-level language application code to binary executables.

The MOVE framework utilizes the transport triggered architecture (TTA) as a proces-
sor template. TTA is VLIW-like instruction level parallelism processor architecture in
which data transports between function units and register files are programmed explicit-
ly instead of programming operations. Operations occur a as side effect of these explicit
transports. Transport triggered architecture is simple, extremely scalable and flexible
and therefore it is an attractive choice for embedded processors.

In this thesis, a processor generator for the MOVE framework that translates the high-
level structural information of a target TTA processor into register transfer level VHDL
description was designed. The designed processor generator improved the usability and
reliability of the of original processor generator of the MOVE framework as the desc-
ription of the target processor is obtained from specification files common to the rest of
the tools of the MOVE framework. A clear interface specification and a functional unit

Abstract 5

template for user-defined functional units was designed. An extensive library of integer
functional units was designed utilizing the template.

Using the VHDL code obtained from the processor generator as a design entry, a lar-
ge set of processor configurations were synthesized and evaluated. The estimated clock
frequencies of the implemented processor designs were found comparable to the fastest
synthesizable processor cores reported. Different transport bus demultiplexing structu-
res were compared and AND-OR composition was found the most promising alternative
to replace the tristate bus traditionally employed in TTA processors. Furthermore, the
effect of clock gating was evaluated and significant reduction in power consumption
was achieved.

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO

Sähkötekniikan koulutusohjelma

Digitaali- ja tietokonetekniikan laitos

Sertamo, Jaakko Ilmari: Processor Generator for Transport Triggered Architectures

Diplomityö: 73 sivua, 5 liitesivua

Tarkastajat: Prof. Jarmo Takala ja Prof. Markku Kivikoski

Rahoitus: Teknologian kehittämiskeskus (TEKES)

Sähkötekniikan osasto

Lokakuu 2003

Avainsanat: transport triggered architecture, elektroniikan suunnitteluautomaatio

Sovelluskohtaisia käskykantaprosessoreita voidaan käyttää nykyaikaisten järjestelmä-
piirien rakennusosina. Näin pystytään parantamaan järjestelmäsuunnittelun joustavuut-
ta, koska piirin toimintaa on mahdollista jälkikäteen muuttaa ohjelmakoodia päivittä-
mällä. Tämän lisäksi järjestelmän toiminnan kuvaaminen korkean tason ohjelmointi-
kielillä on nopeampaa ja vähemmän virhealtista kuin perinteinen piirisuunnittelu. Val-
miisiin suoritinytimiin verrattuna optimoidun käskykannan prosessorit tarjoavat huo-
mattavasti paremman suorituskyvyn ja energiatehokkuuden. Räätälöityjen suorittimien
suunnittelu vaatii kuitenkin paljon asiantuntemusta prosessoriarkkitehtuureista, ohjel-
mistokehityksestä ja laitteistosuunnittelusta, minkä vuoksi niiden käyttö ei ennen ollut
realistista. Tätä ongelmaa helpottamaan on Hollannissa, Delftin teknillisessä yliopis-
tossa, kehitetty MOVE framework. Se on joukko ei-kaupallisia suunnittelutyökaluja,
jotka muodostavat suunnitteluympäristön sovelluskohtaisten suorittimien nopeaan, osit-
tain automatisoituun suunnitteluun. MOVE framework koostuu kolmesta komponentis-
ta. Design space explorer etsii tietylle sovellukselle optimaalisen prosessorikonfiguraa-
tion. Hardware subsystem vastaa laitteistokustannusten arvioinnista ja laitteistokuvaus-
kielisen kuvauksen generoinnista. Software subsystem kääntää ja optimoi korkealla ta-
solla kuvatun sovelluksen prosessorilla ajettavaksi binäärikoodiksi.

MOVE frameworkissa hyödynnetään transport triggered -suoritinarkkitehtuuria (TTA)
suunnittelualustana, jota muuntelemalla sovelluskohtaiset suoritinytimet kehitetään. TTA
suoritinarkkitehtuuri perustuu VLIW-arkkitehtuuriin ja kuuluu siten niin kutsuttuihin
käskytason rinnakkaisuutta hyödyntäviin mikroprosessorityyppeihin. TTA-prosessorien
ohjelmointimalli perustuu operaatioiden määrittelemisen asemesta siirtojen tarkkaan
ohjelmointiin laskentayksiköiden välillä. Datansiirrot liipaisevat laskentaoperaation käyn-
nistymisen ja siirron kohdeosoite määrää operaation tyypin. Tällainen ohjelmointimal-

Tiivistelmä 7

li laskee konekielisen ohjelmoinnin abstraktiotason vielä perinteistä assembler-koodia
matalammalle tasolle. Tästä seuraa, että konekielisen koodin kirjoitus käsin on hyvin
vaivalloista, mutta toisaalta siirtojen tarkka ohjelmoitavuus antaa kehittyneelle aikatau-
luttavalle kääntäjälle mahdollisuuden käyttää hyvin kehittyneitä optimointimenetelmiä,
jotta sovelluksen sisältämä rinnakkaisuus saataisiin mahdollisimman tehokkaasti hyö-
dynnettyä. TTA-prosessorien perusrakenne on hyvin yksinkertainen. Prosessori muo-
dostuu laskentayksiköistä ja rekisteritiedostoista, jotka liitetään toisiinsa kytkentäver-
koston kautta. Kytkentäverkko koostuu väylistä ja laskentayksiköiden ja väylien vä-
lisistä kytkennöistä. Koska siirrot verkossa ovat ohjelmoitavissa, voidaan kytkentöjen
määrä sovittaa sovelluksen vaatimusten mukaisiksi, mikä yksinkertaistaa prosessorin
rakennetta. Laskentayksiköiden ja verkon liityntärajapinta on yksinkertainen ja sään-
nöllinen. Siirtoverkon kapasiteetti, samoin kuin laskentayksiköiden määrä, on kasvatet-
tavissa ilman, että kompleksisuus kasvaa räjähdysmäisesti. Näiden ominaisuuksien ta-
kia transport triggered -arkkitehtuuri on mielenkiintoinen vaihtoehto suurta laskentate-
hoa tarjoavaksi sovelluskohtaisten, sulautetuissa järjestelmissä käytettävien suorittimien
alustaksi.

Tässä diplomityössä esitellään MOVE frameworkin kanssa käytettäväksi suunniteltu
prosessorigeneraattori, joka muuntaa suunnitteluympäristön käyttämän yksinkertaisen
korkean tason prosessorikuvauksen rekisterisiirtotasoiseksi, VHDL-kieliseksi esityk-
seksi. Uusi prosessorigeneraattori katsottiin tarpeelliseksi, koska MOVE frameworkiin
kuuluva prosessorigeneraattori, MOVE processor generator, todettiin rajoittuneeksi se-
kä hankalaksi ja epäluotettavaksi käyttää. Suunniteltu prosessorigeneraattori haluttiin
paremmin yhteensopivaksi muiden MOVE-suunnittelutyökalujen kanssa. Tärkein pa-
rannus tässä suhteessa oli, että prosessorin rakenne ja käskyjen koodaustapa luetaan sa-
moista tiedostoista, joita muutkin MOVE-työkalut hyödyntävät. Nämä tiedostot voidaan
usein luoda automaattisesti ja samalla niiden rakenteellinen ja sisällöllinen oikeellisuus
tarkastetaan. Koska haluttiin selvittää, onko TTA-prosessoreissa perinteisesti käytössä
ollut kolmitilapuskureihin perustuva väylä korvattavissa uusiin valmistusteknologioihin
paremmin soveltuvalla ratkaisulla, lisättiin prosessorigeneraattoriin tuki myös AND-
OR -rakenteeseen perustuvalle ja multiplekseripohjaiselle väylälle. Suorittimessa käy-
tettäville laskentayksiköille määriteltiin yksityiskohtainen ja selkeä ulkoinen rajapinta
ja prototyyppi. Niiden avulla käyttäjä pystyy suunnittelemaan omia laskentayksiköitään
laitteistonkuvauskielien avulla ja hyödyntämään niitä kirjastokomponentteina prosesso-
rigeneraattorilla suunniteltavissa prosessoreissa. Tämän prototyypin pohjalta kirjoitet-
tiin kokonaislukuaritmetiikan tarjoavien laskentayksiköiden VHDL-mallit.

Seuraavaksi design space explorer -työkalulla luotiin kolmelle testisovellukselle joukko
suoritinkonfiguraatioita, jotka sijoittuivat eri kohtiin kustannus-suorituskyky -tasoa. Ke-
hitetyn prosessorigeneraattorin avulla luotiin näitä prosessorikonfiguraatioita vastaavat
VHDL-kuvaukset. Simuloimalla VHDL-kuvauksia varmennettiin generoidun kuvauk-
sen ja prosessorigeneraattorin oikea toiminta. TTA-prosessorien laitteistotason suori-
tuskyvyn mittaamiseksi VHDL-kuvaukset syntesoitiin 0.13 µm:n vakiosoluteknologial-
le ja näin saaduista vetolistoista analysoitiin prosessorien suurin saavutettavissa oleva
kellotaajuus, pinta-ala ja tehonkulutus. Havaittiin, että suunniteltujen suorittimien kel-
lotaajuudet olivat vertailukelpoisia nopeimpien vakiosoluilla toteutettujen suorittimien
kanssa. Lisäksi todennettiin, että kytkentäverkon yksinkertaistaminen parantaa merkit-
tävästi TTA-suorittimen suorituskykyä ja energiatehokkuutta ja pienentää prosessoriyti-

Tiivistelmä 8

men viemää pinta-alaa mikropiirillä. Seuraavaksi vertailtiin prosessorigeneraattorin tu-
kemia väylärakenteita. Havaittiin, että AND-OR -rakenne oli lähes kaikissa testitapauk-
sissa edullisin ratkaisu ja sitä voidaankin suositella jatkossa vakiosoluteknologioilla to-
teutettavien TTA-prosessorien väyläratkaisuksi. Lopuksi kokeiltiin kellojen portitusta
TTA-prosessoreilla. Se vähentää suorittimen tehonkulutusta katkaisemalla kellosignaa-
lin pääsyn rekistereihin niiden kellojaksojen aikana, joissa rekisteriä ei tarvitse päivittää.
Havaittiin, että tällä menetelmällä TTA-prosessorien tehonkulutus pieneni merkittäväs-
ti.

LIST OF ABBREVIATIONS AND SYMBOLS

α Constant reflecting the importance of cost

β Constant reflecting the importance of performance

VDD Operating voltage

2-D Two-Dimensional

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction Set Processor

C62x TMS320C62x

CHDL A combination of C and VHDL code

CMOS Complementary Metal-Oxide Semiconductor

DC Decode stage

DCT Discrete Cosine Transform

DSP Digital Signal Processor or Digital Signal Processing

EX Execute stage

FIR Finite Impulse Response

FU Function Unit or Functional Unit

GCC GNU Compiler Collection

GNU Gnu’s Not Unix

GPR General-Purpose Register

List of Abbreviations and Symbols 10

HLL High-Level Language

ID Identifier

IF Instruction Fetch stage

ILP Instruction-Level Parallelism

MPG MOVE Processor Generator

MV Move stage

PC Program Counter

RA Return Address

RF Register File

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

RTL Register Transfer Level

SVTL Semi Virtual Time Latching

TTA Transport Triggered Architecture

TVTL True Virtual Time Latching

VHDL Very high speed integrated circuit Hardware Description Language

VLIW Very Long Instruction Word

VLSI Very Large Scale Integration

VTL Virtual Time Latching

1. INTRODUCTION

The complexity of system-on-chips for embedded wireless devices is increasing while,

at the same time, greater flexibility of the implementation is being demanded. In addi-

tion, the cost penalty and probability of design errors in traditional application-specific

integrated circuits (ASIC) are steadily rising. These factors are the key drivers for het-

erogeneous platforms consisting of programmable processor cores combined with ded-

icated hardware modules.

Heterogeneous platforms provide high computational performance for runtime-critical

dataflow-dominated tasks, combined with high flexibility for complex mixed control

and dataflow-oriented tasks. Furthermore, the software part of these platforms allows

bug fixes and adaptations to changing requirements at low cost, as well as design reuse

leverage for several product cycles.

Essentially, application-specific instruction set processors (ASIP) can be used as mod-

ules for platform-based design, increasing design flexibility with programmability. Com-

pared to fixed processor cores, instruction-set optimized ASIPs also provide signifi-

cantly increased computational performance and energy efficiency. Traditionally, such

an approach would have been a last resort because of the range of architectural, software

and implementation skills necessary to complete an application-specific CPU design.

The emergence of design environments specifically for generating application-specific

processors and their language tools makes the actual CPU creation considerably more

attractive. One of such design tools is MOVE framework [1], a set non-commercial

software tools aimed at computer aided design of application-specific processors.

The MOVE framework utilizes a subset of transport triggered architecture (TTA), a class

of very long instruction word (VLIW) architecture as a flexible design template. TTAs

have properties that are favorable as a template for application-specific processors. The

modularity and regularity of TTA enables retargetable application code compilation and

automatic hardware generation for a target TTA processor. The latter means essentially

that it is possible transform the internal representation of a TTA processor, optimized

for given application, into a general hardware description, which is independent of the

1. Introduction 12

MOVE framework and TTA. Tool that performs this transform is called processor gen-

erator and the produced hardware description is typically hardware description language

code, e.g., VHDL or Verilog.

In this thesis a streamlined processor generator to replace the existing processor gener-

ator in the MOVE framework is presented. In addition for better usability and improved

interfacing to other components of the framework, the designed processor provides sup-

port for different realization of transport buses and a different hierarchical view to the

structure of a TTA processor. Secondly, this thesis presents various implementation re-

sults, obtained through synthesis of the hardware description language code produced

by the designed processor generator. The implementations were used to evaluate the

hardware characteristics of TTA processors adopted to simple signal processing tasks,

implemented in modern standard cell technology.

The structure of the thesis is the following. In Chapter 2, transport triggered concept

is derived from the VLIW architecture and the hardware and software aspects of TTA

processors are discussed. Moreover, two silicon implementations of TTA processors are

presented.

Chapter 3 describes the MOVE framework and its components. Design space explorer,

a tool for finding the best architecture configuration for a given application is described

first. Secondly, software subsystem responsible for generating instruction level parallel

object code for the processor designs is discussed. Hardware subsystem is responsible

for estiamting the hardware cost of processor designs and generating VHDL description

of the target processor. The latter is, more specifically, the task of the MOVE processor

generator which is discussed and evaluated in more detail.

The new processor generator is described in Chapter 4. First, the requirements for a

processor generator for TTAs and the MOVE framework are presented. Secondly, the

implementation of the designed processor generator is presented. The main focus in

this chapter is in the structure of the generated TTA core described in VHDL, rather

than the internal software implementation of the processor generator. Lastly, the design

principles of a functional unit library incorporated with the new processor generator are

described.

Chapter 5 describes various implementation experiments of TTA processors designed

using the MOVE framework and the new processor generator. At first the performance

of the transport triggered architecture template of the MOVE framework is evaluated

by analyzing a variety of different processor configurations optimized for small DSP

benchmark cores. Moreover, the effect of connectivity optimization of the transport

1. Introduction 13

network on the performance and cost of the processor cores is evaluated. In addition to

performance analysis, three interconnection structures supported in processor generator

were compared. Lastly, the results of applying clock gating on a number of processor

designs are presented. Finally, Chapter 6 presents the summarized conclusions of this

thesis.

2. TRANSPORT TRIGGERED ARCHITECTURES

The possibility to overlap the initiation and execution of multiple instructions within a

single processor is referred to as instruction level parallelism (ILP). Exploitation of in-

struction level parallelism has been an important method for improving the performance

of the latest microprocessors.

In superscalar processors such as Intel Pentium, processor hardware detects and resolves

the dependencies between the operations in sequential instruction stream at runtime.

This approach provides binary compatibility with previous architecture generations but

suffers from hardware complexity and long design cycle, making superscalar architec-

tures an unattractive choice from the embedded systems viewpoint.

VLIW processors issue only one instruction per cycle. Such an instruction typically

consists of several RISC-like operations, such as addition, memory load, or jump. The

operation dependencies, however, are managed at compile-time by a sophisticated com-

piler performing the instruction scheduling. The compiler for VLIWs has a very fine

control over the machine resources and plays an important role in exploiting the re-

sources and enhancing the performance. To achieve this goal, the compiler must use a

detailed model of the target processor and keep track of the machine status and resource

usage. Consequently, VLIWs are simpler, more flexible, and offer good scalability.

Therefore, they are favorable candidates for low-cost high performance systems. Some

notable commercial VLIW microprocessors are TMS320C6x of Texas Instruments and

Trimedia of Philips.

Despite their good properties, the datapath of VLIWs may become too complex, in

particular, when they are scaled to very high performance. Fortunately, the concept of

replacing hardware complexity with compiler effort can be elaborated even further. This

leads us to transport triggered architectures.

Section 2.1 discusses how TTA can be derived from VLIW architecture. In Section 2.2

the hardware aspects of TTAs are discussed. Section 2.3 describes the software aspects

of TTAs. Finally, in Section 2.4 two TTA realizations are presented.

2. Transport Triggered Architectures 15

Immediate

BP−1 BP−2

FU−1 FU−2

Operand
selectors

Register file

Bypass
buses

OP−1,1 OP−1,2 OP−2,1 OP−2,2

Figure 1. Possible data path of VLIW processors with two functional units

2.1 From VLIW to TTA

The datapath of a VLIW processor consists of functional units (FU), which are con-

nected to a register file (RF) through a bypassing network as illustrated in Fig. 1. The

bypass network is required to forward a result from the output of a functional unit to

the input latch of another unit when a read-after-write data hazard occurs on a pipelined

machine. As can be seen, bypassing the values from all FU outputs to all FU inputs

requires crossbar connectivity, which results in quadratically growing complexity with

number of functional units. However, the full bandwidth of this network is seldom

utilized, not even when all the units are busy. [2]

The register file complexity may also become a bottleneck in VLIW processors. For

each functional unit two read ports and one write port are required. This is only for the

worst case situation when each FU needs to perform two reads and one write on the RF.

In majority of VLIW realizations there are four or less functional units connected to a

single register file. Unfortunately the performance tends to degrade when the number

of ports is very high. Clustered VLIW architectures have been introduced to lower the

requirements for the register file and thus improve scalability. [3] [4]

Transport triggered architecture was developed to reduce the complexity of VLIW by

placing the register traffic under program control. In other words, the data transports

become visible at the architectural level and they can be controlled and optimized by

the compiler. TTAs are organized as a set of FUs and register files, which are connected

by an interconnection network. Some functional units may have connections outside of

CPU, e.g., to memory. This organization is illustrated in Fig. 2.

TTAs remind VLIW architectures in that they can perform multiple operations per cycle.

The principal difference is the way, in which operations are programmed and executed.

2. Transport Triggered Architectures 16

FU−2

FU−3

D
at

a
m

em
or

y

Instruction
fetch
unit

decode
Instruction

unit

Central
processing
unit

In
st

ru
ct

io
n

m
em

or
y

In
te

rc
on

ne
ct

io
n

ne
tw

or
k FU−1

RF−1

RF−2

Figure 2. Organization of TTA

In VLIWs, instructions specify RISC type operations, while in TTAs, they specify data

transports or moves. Operations are triggered as a side effect of these data transports:

the destination of a transport implicitly specifies the operation performed on the data.

2.2 Hardware Aspects

TTAs are constructed using a restricted number of building blocks. Essentially, TTAs

are built by a proper connection of FUs and transport/interconnection network. Reg-

ister files can be considered as special kind of FUs (implementing the identity opera-

tion). FUs are completely independent of each other and interconnection network; they

only need to realize the network interface. FUs can, therefore, be designed separately,

pipelined independently, and they can support any type of operations. The modularity

of TTAs allows the hardware design process to be automated. Different TTAs can easily

be configured by assembling different combinations of such blocks. [1]

2.2.1 Interconnection Network

The interconnection network allows FUs and RFs to exchange data. There are two

simple components to the interconnection network: buses and sockets. Buses not only

provide data transport capability but they also perform the distribution of the signals

that control the transports: source and destination register IDs and signals for locking

the processor.

A TTA instruction for a processor with M buses, depicted in Fig. 3, typically consists

of M fields, which each specify an independent, concurrent transport from a source to a

destination. Source and destination refer to a functional unit output and input.

2. Transport Triggered Architectures 17

src dsti src dsti src dsti

field 1 field 2 field M

Figure 3. General instruction format for TTA processor

The interface between buses and functional units is provided by sockets, which imple-

ment programmable connections between functional units and buses. Each socket is

connected to one or more buses and to one or more registers of one functional unit. In-

put sockets are basically input multiplexers, which select a value on one of the buses and

write it into the destination register. Output sockets are output demultiplexers and load

the contents of the source register into one or more of the connected buses. Source and

destination fields are sent through the control path of the buses into all the connected

sockets. The socket connected to a requested register is activated by the register-id and

passes the data in the wanted direction. An interconnection network composed of three

input sockets and two output sockets is illustrated in Fig. 4.

A fully connected interconnection network, where each socket is connected to all the

buses, simplifies the task of assigning transports to buses. However, this is not an effi-

cient design because connections increase the capacitive load on the bus, lengthen the

Out In In

Functional Unit 1

Out In

TransportBus1

TransportBus2

TransportBus3

Functional Unit 2

In
pu

t S
oc

ke
t

In
pu

t S
oc

ke
t

O
ut

pu
t S

oc
ke

t

Interconnection Network

In
pu

t S
oc

ke
t

O
ut

pu
t S

oc
ke

t

Source1

Destination1

Source2

Destination2

Source3

Destination3

Figure 4. Interconnection network

2. Transport Triggered Architectures 18

Cycle

IF DC MV

IF

DC

DC

MV

MV

IF

Possible FU operation

Possible FU operation

Possible FU operation

1

Instruction

2

3

Figure 5. Three-stage transport pipeline. IF: Instruction fetch. DC: Instruction decode. MV:

Move stage.

overall cycle time, and increase the power consumption. In ASIPs, the connectivity of

the interconnection network should match the communication requirements of the ap-

plications and the cost constraints. Since the transports are explicitly programmed, a

TTA compiler can take care of routing the data transports across a partially connected

network effectively.

2.2.2 Transport Pipelining

The execution of instructions can be efficiently pipelined in TTAs. This is called trans-

port pipelining. Functional unit pipelining, described in Section 2.2.3, is also supported

and can be designed independently of transport pipelining. Typically data transports are

executed using a three stage pipelining mechanism, which consists of instruction fetch,

decode, and move stages. Fig. 5 illustrates this pipelining scheme from the instruc-

tion stream point of view. The decode and move stages can be combined for two stage

pipelining.

During the instruction fetch stage instruction memory or cache is accessed for reading

the next instruction. This access takes one cycle. In the decode stage, the source and

destinations fields are extracted from the instruction word and forwarded to sockets,

which activates the data transport to functional units. The actual data transport takes

place in the move stage in which data is copied from output of a functional unit to input

register of another FU. Register file read/write and bypassing data values between FUs

are performed in the move stage. The operations have to be programmed explicitly.

2.2.3 Functional Units and Register Files

FUs are the components that perform the computation and communicate with the exter-

nal environment. Units that are usually present in a TTA processor are instruction fetch,

2. Transport Triggered Architectures 19

guard generation, and load-store units. The instruction fetch unit reads instructions from

the memory and to controls the flow of the program. This is the only unit that can write

the control path of the processor. A load-store unit provides an access to data memory,

external to CPU, in which variables with long lifetimes can be stored.

A functional unit contains one or more input and output (result) registers. Furthermore,

the input registers can be distinguished as trigger and operand registers. The operand

registers provide storage for the input operands of the FU. Trigger registers provide

storage for the input operands but also fulfill two other important functions. First of

all, a transport to trigger register initiates (or triggers) a new operation. Second, if

an FU supports more than one operation, an opcode, which selects the operation to be

performed, is received from the socket concurrently with data to be latched to the trigger

registers. Hence, functional unit input registers have to be identified by the compiler. A

programmed transport to operand and trigger register are called an operand move and

trigger move, respectively. Similarly, a transport that reads the output of the FU is result

move for a given functional unit.

Supporting more inputs and outputs requires multiple instruction formats, which sig-

nificantly complicates the instruction decoding hardware of simple RISC instruction

set architectures. TTAs are much more flexible in this respect. Each operand is en-

coded separately and written independently, thus there is no constraints on the number

of operands that are used by an operation. This characteristic is especially useful in

the context of ASIP design because it allows to add custom operations to be created

with any number of input and output operands, without having to modify the general

organization of the instruction decoder. [5]

When execution of an operation takes more than one machine cycle, it may be subject

to pipelining. The execution stages are local to each FU pipeline and independent from

other FU pipelines. In [2], several pipeline control disciplines are presented, which

determine when pipeline latches are allowed to accept new data. Hybrid and virtual-

time latching are two commonly used latching methods.

FUs employing virtual-time latching (VTL) run synchronously to the instruction stream

as specified by the compiler. Each time an instruction is issued, FU pipeline progresses

one step. Assuming that the functional unit is fully pipelined, i.e., the number of pipeline

stages are equal to its latency, stages accept new data each time an instruction is issued.

It is the responsibility of the compiler to ensure that no data is unintentionally overwrit-

ten. Pipeline is locked only when a stall occurs, e.g., for a cache miss in instruction

fetch. Two different versions of virtual-time latching can be characterized, which differ

2. Transport Triggered Architectures 20

D
EN

D

D

D
EN

EN

EN

D

Q Q Q

Q
Q

o1load o2data o2load t1data

r1data

global_lock

+

o1data

Operand
register

Operand
register

Trigger
register

FU core

Result
register

t1load

Figure 6. 3-input adder unit utilizing SVTL pipelining discipline

on how the transports to operand registers are treated.

For true virtual-time latching (TVTL), move to any of the input registers will start a

new operation. This makes hardware simple but limits the scheduling freedom of the

compiler. In semi virtual-time latching (SVTL), only a trigger move will activate FU

operation. For each operand register, a shadow register has to be added to temporarily

store a pre-fetched operand value. However, the shadow registers can be omitted if FU

has extra register stages in addition to trigger and operand registers. Fig. 6 depicts a

3-input adder unit utilizing SVTL pipelining. The input registers latch the data from the

corresponding input socket if load signal is active, indicating incoming data from the

socket. FU core, in this particular case a 3-input adder, performs the operation on the

latched values of two operand and one trigger register. The result register is updated if

control signal t1loadwas active on the previous clock cycle. The latency of the adder

unit is thus two clock cycles meaning that the result can be read from the result register

two clock cycles after the operation was triggered. The result value remains available

until it is overwritten by the result of another operation. Since the functional unit is

pipelined, new operations can be triggered every clock cycle. When global_lock is

active the FU pipeline is halted.

A hybrid pipeline latches data as long as the pipeline register does not contain valid

data from previously started operation, which is not proceeding in the pipeline. This is

accomplished by attaching a stage controller to each pipeline registers of the FU. The

last pipeline stage proceeds only when functional unit is accessed by a result move. For

this reason FU pipeline has to be flushed if speculative operations have been triggered.

2. Transport Triggered Architectures 21

In [6], the two pipelining alternatives were compared in terms of clock cycle count. Even

though the hybrid pipelining offers greater scheduling freedom, compared to virtual-

time-latching pipelines, the required flush moves degrade its performance when specu-

lative execution is applied. No significant scheduling advantage for the hybrid pipelined

TTA was found for a given set of benchmark applications. Therefore, VTL pipeline is,

in general, preferred due to its simple control logic.

Regardless of their programming methodology, the program controlled register traffic,

also TTA microprocessors require general-purpose registers (GPR) to store the interme-

diate values with short lifetimes. The GPRs are arranged as one or more register files,

which are connected to the interconnection network via input and output sockets just

like ordinary FUs. In TTAs, the number of register file ports can be reduced signifi-

cantly in comparison to VLIWs. Moreover, the GPRs and the register file ports can be

efficiently partitioned into multiple register files partitions without notable degradation

in performance. [7] [8]

2.3 Software Aspects

For traditional operation triggered architectures (OTA), such as RISCs and VLIWs, the

executable program consists of an ordered set of operations which are performed by

the processor. As has been described, transport triggered architectures are programmed

by specifying data transports between the functional units and register files through an

interconnection network. For this reason only one type of operation, move, is required.

Hence, TTAs are also called MOVE architectures and their realizations MOVE proces-

sors.

To illustrate TTA programming, a correspondence between RISC-type add operation

and data transports of a MOVE processor can be illustrated as

r1 -> add.o;

add r3,r2,r1
�

r2 -> add.t

add.r -> r3;

The destinations add.o and add.t are the operand and trigger registers of the adder, and

add.r denotes the result (output) of this adder. TTAs can easily be made fully pro-

grammable. This requires support for control flow operations and conditional execu-

tion. Control flow operations, such as jumps and calls, can be implemented by making

the program counter a visible source and destination location of the instruction fetch

unit. Conditional execution can be supported by guarding move operations; all data

2. Transport Triggered Architectures 22

transports become then conditional on a boolean expression.

The TTA programming method may first seem clumsy. Instead of one dyadic FU opera-

tion three moves have to be specified. However, this approach provides opportunities for

many compile-time optimizations that are not available for the traditional architectures.

Because all transports can now be controlled by the programmer or compiler, unneces-

sary transports, which occur quite frequently in current architectures, can be avoided.

This is the key to solving the scalability problem of VLIWs. [2]

Programming and optimizing code for transport triggered processors is significantly

more complex compared to OTAs. It would be extremely slow and error prone to per-

form it by hand. Due to this, applications should be described in high-level languages

(HLL), such as C or Java. A compiler transforms the high level code to data transports

between hardware resources, and an instruction scheduler optimizes the code trying to

minimize the execution time and code size. Details of code generation and optimiza-

tion are discussed in [6] and [9]. A software toolset for code generation is described in

chapter 3.

2.4 Realizations

A few prototype implementations have been designed and manufactured. Two of such

experimental processors are presented in the next sections.

2.4.1 32-bit General-Purpose Processor

In order to evaluate the specific design and implementation tradeoffs, an instance of a

transport triggered architecture, called MOVE32INT, was designed at Delft University

of Technology. [10] The architecture mainly consists of a transport network, controlled

by the network controller, and several functional units. The network contains 4 busses.

Each bus contains a data bus, which is capable of transporting one data value of 32 bits,

an ID-bus, which transports one move operation specifier of 16 bits (as shown in Fig.

8), and a control bus, which contains a few control signals. This means that four data

transports (moves) can be handled in parallel.

Fig. 7 shows the operational view of MOVE32INT, including operand (O), trigger (T)

and result registers (R). As indicated, the processor uses a Harvard architecture, i.e.,

there are separate memory interfaces for the instructions and data. MOVE32INT con-

tains 10 FUs.

2. Transport Triggered Architectures 23

T O R T O RT O R

T O R T O RT O R

Load/Store

N
et

w
or

k
C

on
tr

ol
le

r

D
at

a
tr

an
sp

or
t &

Integer 2Integer 1 Logic Shift

R R

Immediate
Ids

T

Instruction Cache

Compare
X

Compare
Y Ifetch

T R

R

address data instruction
0−16 0−31

address
0−16 0−31

IR
C

on
tr

ol
 N

et
w

or
k

RF

Figure 7. Operational view of MOVE32INT.

Integer units perform addition and subtractions and the logic unit boolean operations,

AND, OR, and XOR on two operands. Shift unit performs 1-bit and 2-bit shifts on

the data fetched to trigger register and stores each result to separate registers. There

is one immediate unit for each bus. Reading from this unit has the effect of putting

the 6-bit source identifier of the move operation as an unsigned integer on one of the

data transport busses. Compare units (X,Y) produce boolean result values which can

be read from the result registers. Their output is not connected to the data bus, but to

the control bus, and is used to guard the data transports. Load & Store unit contains a

trigger and result register for the load part, and a trigger and operand register for the

store. This unit is connected to the external data memory. Instruction fetch (Ifetch) unit

is basically a load unit, where the address (the program counter) is auto-incremented.

However, writing to the trigger register forces a jump. Reading from the result register

gives the address of the current instruction plus 2. The Ifetch unit is connected to a small

internal instruction cache. FUs are implemented using the hybrid pipelining mechanism.

The transport pipeline of MOVE32INT employs the three stage scheme presented in

Section 2.2.2.

Each instruction for MOVE32INT contains 64 bits and specifies four transports. The

format for the instruction and the move are shown in Fig. 8. It contains 3-bit guard

specifier, 1-bit immediate flag, and 6-bit source and destination fields. The immediate

flag determines the interpretation of the source field. This source field contains either a

short 6-bit immediate, or a specification of a source register.

MOVE32INT supports a very general way of conditional execution; each move is con-

ditionally executed. The condition is specified by a 3-bit guard specifier in each move.

2. Transport Triggered Architectures 24

Instruction format

destination register−id0

1

immediate

source register−id destination register−id

015 61213 511bits:

move−1 move−2 move−3 move−4

063 151631324748bits:

Move formats
guard

specifier
guard

specifier

immediate flag

Figure 8. MOVE32INT instruction and move formats

During each cycle 4 guards are produced, one for each transport bus. The guard de-

termines if a move has to be performed or has to be squashed. The guard specifiers

indicate how to evaluate the guards; many boolean expressions of the boolean results of

the compare units (Rx and Ry) can be specified.

MOVE32INT was realized and fabricated in a 2 µm (minimal gate length 1.6 µm, 2

metal layers) CMOS Sea of Gates (SoG)[11] technology. The SoG image contains 88

rows of 1088 transistor pairs per row resulting in 191k transistors. The total die size is

1 � 1 cm2. MOVE32INT can achieve a relatively high clock rate, 80 MHz, despite the

modest technology used.

2.4.2 Application-Specific Processor for Navigation Receiver

An application-specific processor for a multi-system navigation receiver is presented in

[12]. Since various computation tasks, such as real-time digital filtering, Fourier trans-

forms, and tracking loop algorithms, has to be performed in the receiver, an ASIP was

chosen instead of custom hardware. The flexibility of transport triggered architectures

allowed the designers of the processor to optimize the processor configuration for the

real-time signal processing, specifically for a digital finite impulse response (FIR) filter.

The programmability of this architecture makes it possible to adapt the receiver for new

navigational algorithms.

The navigation processor contains multiplier, adder, accumulator, and two vector regis-

ter units. The vectors register units contain 128 registers which are organized as FIFO

queue with feedback from head to tail through a multiplexer. The queue advances one

position when the vector register is read, and the head value is written back to the tail

and passed to transport bus. When a write to the vector register occurs, the FIFO does

not advance and the tail element gets replaced by the value from the bus. The vectors

register is used in navigation processor to store FIR filter coefficients.

2. Transport Triggered Architectures 25

1 4 4 1 4 4

src2dst1src1g dst2 g src3 dst3 g src4 dst4g

1 3 3 1 3 3

Figure 9. Instruction format of the navigation processor.

The transport network of the navigation processor consists of four 16-bit transport buses,

which is sufficient for fast FIR filter computation. The buses are implemented with

precharged wired-OR technique. Each instruction for the processor contains 32 bits and

specifies four transports, one transport for each bus. The instruction is composed of

source and destination fields as depicted in Fig. 9. A guard bit is specified for each

transport. If the guard bit is true the move is always executed. If it is false, the move is

disabled if the predicate most recently computed by the of the guard unit is false.

The navigation processor was implemented on 180k transistor 1.6 µm CMOS sea-of-

gates chip. The transport network was found to be the critical path in the processor,

limiting the maximum clock frequency to 125 MHz.

3. MOVE FRAMEWORK

As the discussion in the previous chapter shows, transport triggered architectures have

properties that are valuable for an application specific processors. They are constructed

from a limited number of building blocks and are thus modular. The performance of

TTAs can be scaled to meet the application requirements by adding more functional

units. The communication resources, i.e., buses and sockets, can be carefully tailored

for a given application independently of the FUs. Moreover, to enhance performance,

application-specific functionality can be easily added without any kind of modification

to the interconnection network interface or the instruction decoding. Finally, a TTA

processor can be designed to be fully programmable so that it can execute any high-

level language program.

To exploit these advantages, an automated design framework, called the MOVE frame-

work, has been developed in Delft University of Technology. The MOVE framework

aims at automated design of TTA-based computing systems. As shown in Fig. 10,

it consists of three interoperative parts: hardware subsystem, software subsystem, and

design space explorer. The hardware subsystem is aimed at the automatic generation

of MOVE processor hardware designs, implemented in a specific technology. The soft-

ware subsystem is aimed at generating machine code for one or more target applications,

written in a HLL. The third component, design space explorer, automates the search of

suitable TTA configuration for a given application.

The MOVE framework is based on a shared architecture description called machine

description file, a complete textual specification of the target processor architecture,

which contains a set of architectural parameters. These parameters fully describe the

essential characteristics of the target processor, such as the number and type of FUs,

transport buses, RFs, etc. The machine description file is used as a communication

method between the three subsystems of the MOVE framework.

The design space explorer is discussed in Section 3.2. The software subsystem, which is

further consist of front-end and back-end is detailed in Section 3.3. Finally, the hardware

subsystem is subject of Section 3.4.

3. MOVE Framework 27

processor

netlist

layout /
parallel Move code

architecture description

application
description
in a HLL

technology

cell library
description,

hardware subsystemsoftware subsystem

explorer

Figure 10. General organization of the MOVE framework.

3.1 Architecture Template

The architecture template of the MOVE framework (the MOVE architecture template)

defines the set of architectural parameters that uniquely specify the properties of the tar-

get TTA processor. A processor is designed by instantiating the user-definable architec-

tural parameters of the template, specified in the machine description file. The MOVE

architecture template is a subset of the general TTA concept, although extremely flexible

one. Use of such a template enables automated design space exploration, retargetable

code generation, and automated processor hardware synthesis.

The interconnection network can contain any number of buses and the connectivity

between sockets and buses can be freely chosen. However, the width of the move buses

is currently limited to discrete values of 1, 32, and 64 bits. Consequently, this defines the

minimum and maximum input and output data widths of the FUs, because if a functional

unit is connected to 32-bit bus it is assumed that the FU supports operations on 32-bit

input data.

The MOVE architecture template does not set limitations on the number of functional

units or register files. Moreover, a functional unit may contain any type of operations on

condition that they have equal latencies. The functional unit can either fully pipelined,

which means that a new operation is allowed to trigger every cycle, or completely un-

pipelined. The latter means that there has to be at least latency cycles between two

consecutive operations. For pipeline control, the MOVE architecture template supports

hybrid-latching pipelining and semi-virtual time latching pipelining (Section 2.2.3). In

functional units, the latency is user-definable architectural parameter, whereas the la-

tency of register files is fixed to one clock cycle. This means that value stored in a

general-purpose register, located in the register file, must be accessible by a result move

next cycle it was written by a trigger move. The register files of the MOVE architecture

3. MOVE Framework 28

Bus Field n

Instruction Word

...

Address Opcode

Immediate

Guard Source Destination

Bus Field 1 Bus Field 2

Dedicated Immediate Slot

Figure 11. Instruction format of MOVE architecture.

can have any number of read ports and write ports. The number of input and output

ports of functional units is restricted to eight.

The generic instruction word of the MOVE architecture is depicted in Fig. 11. Apart

from the source and destination fields the instruction word contains a guard field for

each bus. The guard field for a given bus contains a binary coded guard expression that

specify a condition whether the move on the bus should be executed or not. The guard

expression are expressions of boolean variables, stored in boolean registers. Contents

of the guard field for a processor with two boolean registers are shown in Table 1. If the

guard expression is false, the move on the corresponding bus is blocked. The boolean

registers can be written through interconnection network, but their contents can only be

used in guard expressions.

Constant values that are known at compile-time do not need to be stored in registers or

memory; instead, their binary representation can be encoded into the instruction stream.

Small constants can be encoded in the source fields. For longer constants, dedicated

immediate slots can be used.

In the MOVE architecture, a jump operation is performed by writing the destination

address into the program counter, and conditional branches are simply guarded jump

operations. Depending on the instruction pipeline, a jump can have one or more delay

slots. For example, on an instruction pipeline consisting of three stages IF-DC-MV (in-

struction fetch, instruction decode, move) a jump takes two cycles (after being fetched

from memory) to update the program counter with its target address. If the latency of

instruction memory is greater than one clock cycle, it adds delay slots to jumps. A sub-

program call is special kind of jump in which the previous value of the program counter

is written to return address register. The contents of return address register can be read

through the interconnection network and saved if nested jumps are required. Only ab-

solute addressing of the instruction memory is supported in the MOVE architecture.

3. MOVE Framework 29

Table 1. Guard encodings for processor with two boolean register

binary word expression interpretation

“000” true always execute the move

“001” b0 execute if boolean register 0 contains ’1’

“010” b1 execute if boolean register 1 contains ’1’

“100” false never execute the move

“101” � b0 execute if boolean register 0 contains ’0’

“110” � b1 execute if boolean register 1 contains ’0’

3.2 Design Space Explorer

Designing an ASIP by means of templated TTA consists of finding a proper configu-

ration for the given application, where the configuration corresponds to a set of archi-

tectural parameters. For TTAs, the architectural parameters are the number and type of

FUs, the configuration and size of RFs, and the capacity of the interconnection network.

The design objectives for an embedded ASIP are to minimize execution time and cost,

where the latter is proportional to the processor area. The objectives are conflicting, a

fast processor is typically also an expensive one. It is very unlikely that examining a

non-trivial application is sufficient to find a suitable processor configuration. For this

reason the design process should based on quantitative feedback from the compiler and

the hardware estimator.

Although the TTA template is used in the design process, the design space is still ex-

tremely large. Selecting a proper solution from this design space requires analysis of

many design points. Design space explorer of the MOVE framework automates this

search process [6].

The design space of TTAs is infinite, discrete, and has a large number of dimensions.

An evaluation function of the Design space explorer maps the design space to a two di-

mensional cost/execution time space. A configuration is evaluated by invoking the com-

piler and hardware estimator. Information on cycle count is obtained from the compiler

whereas the hardware estimator approximates the silicon area of the target processor

configuration being evaluated.

Only a subspace of the cost/execution time space is interest to the designer. These points

are called Pareto points. A configuration is a Pareto point if it is realizable and there are

no other realizable configurations that are both faster and cheaper.

Design space exploration is composed of the two separate tasks, resource optimization

3. MOVE Framework 30

and connectivity optimization. Resource optimization consists of finding the right match

of resources, such as which FUs to use, how many buses, how many registers, and

how many ports on the register files. The goal of resource optimization is to reduce

costs. Connectivity optimization determines the connectivity between the buses and

the sockets. The resulting connectivity is based on the communication requirements

between the FUs and the register files. The primary goal of connectivity optimization

is to reduce the bus load and thus the cycle time. Details of resource optimization is

presented in the Section 3.2.1. The Section 3.2.2 discusses connectivity optimization.

3.2.1 Resource Optimization

The objective of resource optimization is to find present a large set of Pareto points to

the designer from which he/she can make a choice. The Pareto points are found by the

means of a local search algorithm [6]. The starting point for resource exploration is a

oversize architecture configuration. From this configuration the exploration proceeds to

the next configuration by removing one of the resource. The resource to be removed

is determined according to the following quality function that evaluates a design space

point:

quality �
1

ExecutionTimeα � Costsβ (1)

where α and β are constants, which express the relative importance of performance and

costs. The influence of the high bus load on the execution time is ignored at resource

optimization phase since connectivity optimization, which takes care of the bus load, is

performed after resource optimization has been completed.

After the local search algorithm has reached the minimum configuration the process

is reversed and the resources are added until the initial configuration is reached. With

this sweep back, it is possible to find new Pareto points. During the remove-sweep it

is necessary to stay as close as possible to the cost axis. This is achieved by β � α.

Similarly, during the add-sweep it is necessary to stay close to the execution time axis

which is achieved by α � β. A few remove/add-sweeps are performed with different

values for the α and β constants. For each configuration found in resource optimization,

a machine description file is generated.

3.2.2 Connectivity Optimization

Connectivity optimization transforms the fully connected configuration found by re-

source optimization into a partially connected configuration that has less load on the

3. MOVE Framework 31

compiler back−end

architecture
description

parallel simulator

sequential simulator

C/C++ application

parallel
Move code

Move code
sequential

compiler front−end

profile
program execution

Figure 12. Software subsystem of MOVE framework.

buses and therefore a shorter cycle time. This is accomplished by removing bus socket

connections from the buses in round robin fashion to balance the bus load. In ad-

dition, removing connections also results in smaller area due to simpler multiplex-

ers(demultiplexers) in the sockets. Furthermore, the instruction size may decrease since

the number of addressable locations per bus is lower. The bus socket connection that is

removed from a bus is the first connection that has no influence on the cycle count. If

no such connection exists, the connection with the lowest influence on the cycle count

is taken. This process is repeated until the cycle time remains constant and the cycle

count starts to increase. [6] As with resource optimization, a configuration found in

connectivity optimization phase corresponds to a unique machine description file.

3.3 Software Subsystem

The purpose of the software subsystem is to generate machine code that can be run on

a given target processor for an application specified by the user. Also, the software

subsystem produces execution statistics and allows to verify that the generated code is

correct. The various tools that form the MOVE software generation subsystem and their

relations are illustrated in Fig. 12. First, a front-end compiler based on GCC, accepts

applications written in a HLL, e.g., C or C++, and generates unscheduled, sequential

MOVE code, which can be simulated with the sequential simulator to obtain profiling

information. The back-end reads in the sequential code, the architecture description

and, if present, the execution profile. The main task of the back-end is to generate

instruction-level parallel code, optimized for the target processor specified by the ar-

chitectural parameters. A flexible, retargetable instruction scheduler, capable of region

scheduling and software pipelining performs the task. The resulting code can be simu-

3. MOVE Framework 32

lated with the parallel simulator. The output of the parallel simulator can be examined

and compared to the output of the sequential simulator in order to verify the correct-

ness of the generated code. Performance statistics such as schedule length, hardware

resource utilization and execution time give the ASIP designer valuable feedback and

are also used by the design space explorer, described in previous section. [5]

3.4 Hardware Subsystem

The hardware subsystem of the MOVE framework is responsible for generating and

evaluating the hardware of the processor design. The two components of the hardware

subsystem are MOVE estimator, detailed in Section 3.4.1, and the MOVE processor

generator which is the subject of Section 3.4.2.

3.4.1 MOVE Estimator

The MOVE estimator is a tool responsible for characterizing a given target processor in

terms of attainable clock frequency and silicon area. As was presented in Section 3.2.1,

a large number of different architecture configurations has to be characterized during

design space exploration process. Complete synthesis process and netlist analysis for

each design point for obtaining area and timing information on a target processor would

make the exploration runtimes extremely long. Therefore, the MOVE estimator uses

a model of higher abstraction level to characterize a move configuration correspond-

ing a design point. As with other parts of the MOVE framework toolset, the machine

description file is the primary input to the estimator tool.

The area estimation of a configuration is fairly straightforward. It is the sum of the

area of the needed for FUs, sockets, register files, transport buses, and bonding pads.

Optionally, the area of a on-chip program RAM can also be added to this number. There

are separate expressions for each type of FU. The area of the FUs is function of operand

width. Also the number of pipeline stages is taken into account. The area of a socket

depends on the number and the width of the buses to which the socket is connected.

Using the area estimates for the sockets and functional units the area required for the

transport buses is calculated. Assuming that channel routing is used, the area of buses

increases almost quadratically with number of wires (bits) on the bus. The number of

bonding pads for data is determined by the number of bits in the instruction word plus

the number of data pins on the load/store units whereas the number of power/ground

3. MOVE Framework 33

pre−processing

compiling

running

synthesis

CHDL files

netlist

fu_def.h

C files

info.txt MOVE.VHDL assembler_info.txt

MPG program

processor_parameters.h

user
input

Figure 13. MOVE processor generator design flow

pads is related to the total area. [13]

The minimum cycle time is the maximum of the longest FU stage delay and the longest

bus transport delay of the entire processor if three stage transport pipelining is employed.

In case of two stage pipelining, the final stage of the FU is directly connected to the bus.

This means that path dictating the cycle time is the slowest final-FU-stage/transport bus

combination. [13]

3.4.2 MOVE Processor Generator

The MOVE processor generator (MPG) generates VHDL description of a MOVE pro-

cessor according to parameters given by the user. The produced VHDL code can be

simulated at register transfer level (RTL) with aid of a generated testbench. Any stan-

dard computer aided design tools that accept VHDL as entry language, e.g., logic syn-

thesis software, can be used to process the design further. Complete design flow using

the MPG is illustrated in Fig. 13. [14]

Before being able to generate the VHDL description, the MPG needs information on

the target processor configuration. This information is divided between two textual

files, “processor_parameters.h” and “fu_def.h”. In the latter one, the functional units

that are available to be used in the processor configuration are defined in C language

arrays, illustrated in Fig. 14. Global properties of the processor, such as number and

width of the transport buses are defined in “processor_parameters.h”. It also contains

attributes of some function units like the instruction fetch unit and the load-store unit.

3. MOVE Framework 34

Fu_def fudefs[] =
{
{

"int", /* FU type */
"integer_unit", /* FU id */
intfua, /* FUC generation function */
{
1, 1, 1, /* no. of T, O, and R ports*/
{1}, {0}, {0}, /* no. of id bits used for above */
{32}, {32}, {32}, /* datawidth of the sockets */

},
false, /* FU uses clock signal */

false, /* FU uses reset signal */
false, /* FU uses lock request signal */
true, /* FU uses result register */
true, /* FU uses SVTL of TVTL */

0, /* number of off-chip signals */
{0}, /* width of each off-chip signal */
{0}, /* type of each off-chip signal */
{""}, /* name of each off_chip signal */

}

. . .

Figure 14. Functional unit definition in fu_def.h

For example, support for virtual memory can be enabled and the size of the generated

caches can be specified.

The user can define the combinatorial logic for his own units but the pipeline control

mechanism and FU interface, detailed in Section 2.2.3, are always automatically gener-

ated. As well as the FU definitions, also the FU instantiations and their connections to

the buses are specified in “fu_def.h”. Again the information is organized in C language

arrays. Functional unit parameters and the connectivity between FUs and transport net-

work, defined in the arrays, has to match the parameters and the connectivity defined

in machine description file in which the architecture configuration is defined for the

rest of the tools of the MOVE framework. For example, an excerpt entry of a machine

description file, shown in Fig. 15, defines a functional unit fu0 to be instantiated and

connected to buses one and two, of three transport buses contained in the processor. The

corresponding section of “fu_def.h” shown in Fig. 16.

The user has to take care that the instantiated, functional unit can perform the necessary

operations which in example of Fig. 15 are integer addition and subtraction. A drawback

is the fact that the connectivity information has to be copied manually from the section

where the sockets are defined in machine description file. No automatic tool is provided

with the MPG for this conversion. The interface via C language arrays also degrades the

3. MOVE Framework 35

. . .
Sockets
{

as0_o input, { bus1, bus3 };
as0_t input, { bus2 };
as0_r output, { bus1, bus2, bus3 };

. . .
FunctionUnits
{

as0 always, 2, {as0_o}, as0_t,
{as0_r}, {add, sub};

}

. . .

Figure 15. Functional unit instantiation in machine description file

usability of MPG. The user has to define the width of the field, in which, for example,

the bus to which a socket in connected to. The MPG does not perform any checks if

the number of elements in the field matches the defined width. The user has no way to

validate that the specification in the in“fu_def.h” actually matches the definitions in the

machine description file.

The instruction fetch unit template applied by the MOVE processor generator is pre-

sented in [15]. It contains support for features such as exceptions, virtual memory, and

instruction cache. Even though these functions could be useful in some implementa-

tions, organization of the instruction unit template is not flexible enough so that these

additional features could be removed or added individually.

MPG and the binary code generator of the MOVE framework back-end do not use the

same algorithm for managing the addresses (IDs) for the sockets. For this reason, the

processor generated by MPG cannot run the binary code generated with the software

subsystem of the MOVE framework as such. The hardwired identifiers in the gener-

ated VHDL description have to be changed manually, which is tedious and error-prone

process.

MPG is written in CHDL, which is a mixture of C and VHDL languages. The CHDL

pre-processor creates C files of all CHDL files. The C files generated by the CHDL

pre-processing are be compiled and the executable file MPG is generated.

The MPG generates three output files, info.txt, assembler info.txt and move.vhdl. info.txt

contains information about the generated processor architecture, for example, an overview

of the chosen parameter values and some values calculated by the MPG. Information

required for code generation is available on “assembler_info.txt”. All the generated

3. MOVE Framework 36

{
"as0", /* name of FU instantiation */
"integer_unit", /* id */
{ /* tsocks configuration */
{

1, /* number of buses */
{1} /* buses tsock is connected to */

}
},
{ /* osocks configuration */
{

2, /* number of buses */
{0,2} /* buses osock is connected to */

}
},
{ /* rsocks configuration */
{

3, /* number of buses */
{0,1,2} /* buses rsock is connected to */

}
}

}

. . .

Figure 16. Functional unit instantiation in fu_def.h

VHDL code for this particular processor design is included in “move.vhdl”.

4. NEW PROCESSOR GENERATOR

When the MOVE framework is used for ASIP design, the designer first optimizes the

target processor configuration to suit the performance requirements of the target applica-

tion while simultaneously trying to minimize the costs. After an adequate configuration

is found, it has to be transformed into a format that represents physical implementation.

A processor generator can be applied to automate this transform process. Requirements

for such a processor generator are discussed in Section 4.1. Implementation and design

of a new processor generator is described in Section 4.2.

4.1 Requirements

The defects found in the MOVE processor generator, described in Section 3.4.2, encour-

aged to design a new processor, which has simpler user interfaces and better support for

the inherent modularity of transport triggered architecture, and which can be easily in-

corporated to the rest of the tools of the MOVE framework. General requirements for

a processor generator for ASIPs are discussed in Section 4.1.1. In Section 4.1.2 the

interfacing between the MOVE Framework and the processor generator is defined. Sec-

tion 4.1.4 describes interconnection structures that need to be supported by the processor

generator.

4.1.1 General Requirements

Ideally, processor generator would operate as a silicon compiler that creates the very

large scale integration (VLSI) layout image of the processor, representing the actual

devices processed to silicon wafer. However, such a direct transform is not very feasible.

There exists already numerous design automation tools for layout design and thus there

is no need to include such capabilities to the processor generator. Instead, generating an

intermediate design specification with HDL is more beneficial alternative.

4. New Processor Generator 38

Hardware description languages, such as VHDL or Verilog, allow structural and behav-

ioral design specification at different abstraction levels. Although neither VHDL nor

Verilog support description on technology specific physical level, both of them can be

used to present a netlist, which describes the interconnectivity of blocks or cells. An

equivalent layout image can exist for these blocks, or only a behavioral description for

such a block can be given. By describing the behavior of the processor and its building

blocks, the specification is less prone to errors and the verification process is alleviated.

The simulation run-times of a behavioral description are shorter by many orders when

compared to the run-times of circuit simulation on transistor-level netlist, extracted from

layout. Different abstraction levels as well as structural and behavioral description style

can be easily mixed, even inside a block. Another benefit for using HDLs as an interme-

diate format is that the HDL description can be technology independent but it can still

contain the exact definitions of registers, buses, and off-chip ports that the physical im-

plementation requires. Both VHDL and Verilog, being standardized languages [16][17],

are accepted as design entry format by the majority of design automation tools. A spe-

cial class of tools, logic synthesis software, can automatically transform a behavioral

description of the processor to a netlist consisting of technology specific cells. [11]

The simplicity and regularity of TTAs enables automatic generation of complete, bit

accurate, hierarchical HDL description of a TTA processor according to configuration

description given by the user. The generated HDL is targeted to be used as an design en-

try for logic synthesis with standard cell technologies. During the synthesis, the design

is optimized according to timing and silicon area constraints specified by the designer.

However, the quality of results of the optimizations strongly depends on the coding style

applied in the HDL description. Consequently, HDL code produced by the processor

generator has to follow the guidelines and rules set for efficient HDL code so that there

is no need to manually tune the processor design for better synthesis results.

4.1.2 Interfaces

The new processor generator has to obtain the information on the organization of the

target processor directly from the machine description file. Machine description file has

a well defined lexical structure and compact, accessible organization. A complete syntax

and semantic check is performed when this file is accessed by the tools of the software

subsystem. Therefore, majority of inconsistencies and syntax errors are eliminated if

the file is processed in advance by the tools of the software subsystem, making the error

checking a secondary design criterion for the new processor generator.

4. New Processor Generator 39

. . .
MoveSlot 0:150,13
{

GuardEncoding 11,2
{

inv: 1, 0x1;
true: 0x1;
b.0: 0x0;

}

SrcIDEncoding 0,7
{

Immediate: 6,1,0x0;
Sockets:

ri4_o2 : 1,6,0x40 ri4_o2-0;
ri6_o2 : 1,6,0x42 ri6_o2-0;
fu15_r : 0,7,0x44 fu15-4;
ri1_o2 : 0,7,0x45 ri1_o2-0;
ir_1 : 0,7,0x46 ir_1-0;

}

DstIDEncoding 7,4
{

Sockets:
fu15_t : 2,2,0x0 fu15-0;
fu6_t : 1,3,0x4 fu6-0;
fu27_t : 1,3,0x6 fu27-0;
fu4_o : 0,4,0x8 fu4-1;
fu4_t : 0,4,0x9 fu4-0;
fu6_o : 0,4,0xa fu6-1;
b1_i : 0,4,0xb b1_i-1;

}

}

. . .

Figure 17. Section of binary mapping file describing socket ID encoding

The address generation method used in the back-end of the software subsystem does

not have to be duplicated in the processor generator. For the binary code generation, in-

formation on the socket addresses and opcodes delivered to FUs is read from a specific

binary mapping file. This file is a structured textual database that defines an unique ID

for each addressable location (socket) and an unique opcode for each supported opera-

tion. The binary mapping file can be generated automatically for a given target proces-

sor configuration described in machine description file. The task of the new processor

generator is to parse the information from this text file and generate the hardware de-

scription accordingly. A section of the mapping file where the encodings for destination

and source IDs for sockets connected to a given bus is depicted in Fig. 17.

4. New Processor Generator 40

4.1.3 Modularity

In the new processor generator, there has be a clear partitioning which of the modules of

the processor can be provided by the user and for which parts the HDL description is cre-

ated by the processor generator. For transport triggered architectures this distribution of

tasks if fundamentally straightforward: building blocks, which are to be modified when

the number of computation resources and communication resources is varied, have to be

generated. Primarily, this means the interconnection network and the top level binding

of the components. Parts that have a regular interface to interconnection network, i.e.,

functional units and register files, can be provided as library components, which can be

plugged in to the interconnection network at the top level description, independently of

other components. This does not of course exclude that HDL generation for complete

processor design can be supported. But an application programming interface (API)

for utilizing user defined submodules should be given when it is possible. Design of a

library of functional units is detailed in Section 4.3.

A simplistic instruction fetch unit is sufficient for the new processor generator. The

fundamental task of the this instruction fetch unit is to retrieve instructions from the

memory address pointed by the program counter and implement the control flow in-

structions, such as jumps and calls, supported by the software subsystem.

4.1.4 Support for Different Interconnection Structures

In Chapter 2, it was stated that the interconnection network of a TTA processor does

not require full crossbar connectivity. Nevertheless, even a partially connected network

may be responsible for a significant portion of the costs of a TTA processor. Inter-

connection network with a given architectural properties (buses, connections) can have

numerous lower-level implementations, which appear identical from the compiler view-

point. These implementations can differ significantly in terms of delay, silicon area,

and power consumption depending on the used target technology. One interconnec-

tion structure may be more suitable for a given application and processor configuration.

Therefore, the new processor has to able to generate HDL code for different intercon-

nection structures.

To be precise, the design freedom on different interconnection network structures on

the behavioral level consist mostly on specifying the design hierarchy and the detailed

structure of demultiplexer in the datapath of the result sockets. In fact, as will be shown

later, the result sockets are not necessary a concrete hardware component, but merely a

4. New Processor Generator 41

concept for the compiler and the designer to define connections between functional unit

outputs and buses. The transport triggering concept is not dependent on the existence of

the sockets. It mainly defines that a processor is programmed by specifying moves that

are conducted by an interconnection network.

4.2 Implementation

Based on the guidelines set in the previous section, a new processor generator was de-

signed and implemented. Fundamentally, a processor generator is a software tool that

performs a transformation from one source hardware description language to another. In

this case, the transformation means converting the description presented in internal for-

mat of the MOVE framework to a generic standardized hardware description language

code that represents the processor design in format that is not dependent of the MOVE

framework.

For statically scheduled processors such as TTAs, all the latencies, i.e., the depths of

internal pipelines in the processor, have to be visible to the compiler. If the latency is

an architectural parameter that can be varied, then it is specified in machine description

file. Latencies that are not specified cannot be changed; otherwise the compiler cannot

schedule the code correctly. Therefore, there is virtually no opportunities to optimize

the processor at the HDL generation phase of the design process. For this reason, the

HDL generation is fairly straightforward and consists mostly on string processing and

formatting. Also the complexity of feasible processor designs is limited and, therefore,

it is not necessary to pay too much attention on performance and the memory traces

of the internal data structures of the processor generator, specially when the processor

generator is run on a modern computer workstation.

Due to the low performance requirements, the processor generator was written in Python

[18]. Python is an interpreted, interactive, object-oriented programming language. It in-

corporates modules, exceptions, dynamic typing, very high level dynamic data types,

and classes. Python combines powerful text manipulation features with very clear syn-

tax. It has interfaces to many system calls and libraries, as well as to various window

systems, and is extensible in C or C++. Finally, Python is portable: it runs on many

brands of UNIX, on the Mac, and on PCs under MS-DOS, Windows, Windows NT, and

OS/2.

The processor generator is a command line script-like tool that obtains the name of the

machine description file and corresponding binary mapping file as well as the bus struc-

4. New Processor Generator 42

Legend

Library
Component

Generated
by Processor
Generator

Processor Core

Interconnection Network

RF2

FU2

RF1

FU1

Control

Figure 18. Processor Organization

ture to be used as command line parameters when it is invoked. Information from the

files are parsed and stored to internal data structures. Additional information, which is

not available on machine description file, is provided with separate input files. An input

file to define external ports of the processor can be given as well as a file that speci-

fies how the external ports are mapped to ports of the functional units. The processor

generator produces a separate file of VHDL code for each generated submodule of the

processor. The organization of the generated processor explained in next section.

4.2.1 Processor Organization

The control of the TTA processors has traditionally been distributed to the sockets that

have been responsible of performing both the instruction decoding and the data flow

control. A different point of view to the organization of the processor has been taken

for this processor generator. This structure is illustrated in Fig. 18. All the hardware

allocated for control path of the processor is placed to a control unit. The interconnec-

tion network, being exclusively a datapath component, consists of multiplexers from

input sockets and demultiplexers from output sockets. The instruction decoding from

the sockets is centralized to the control unit. In the instruction decoding, the pipeline

control signals opcodes are generated for functional units and register files as well as

control signals for multiplexers and demultiplexers of the interconnection network.

4. New Processor Generator 43

The task of the processor generator at top-level of design hierarchy is to create the top-

level structural VHDL description, i.e., a netlist, of the target processor. The netlist is

composed of set of instantiated components and connections between them. Two of the

components, the control unit and interconnection network are generated by the proces-

sor generator. Functional units and register files are instantiated from a pre-designed

library of components. The detailed structure and HDL code generation for intercon-

nection and control unit are discussed in Sections 4.2.2 and 4.2.3, respectively.

To be able to exploit user defined functional units and register files, a clear and consistent

interface specification for a FU/RF is required. Assuming this interface specification is

met, the processor generator can automatically instantiate components from a library of

units and generate the necessary wiring to connect the unit to interconnection network

and control unit.

There has to be a convention how a functional unit defined in the machine description

file corresponds to a HDL object such as entity (VHDL) or a module (Verilog). For

this processor generator this binding is realized through the module/entity name. The

architectural parameters for a unit are combined into a character string which is the

name of entity/module expected to be found in the library.

The general interface for a functional unit/register file is illustrated in Fig. 19. The

interface ports are divided into classes as follows. Ports of the standard interface carry

data from unit to interconnection network and vice versa. The opcodes indicate (a)

the operation to be executed and (b) the register that is written. For each FU, there

has to be one (and only one) trigger data input (t1data), but for register files with

I input ports, I trigger data inputs (t1data..tIdata), and thus I opcode inputs

(t1opcode..tIopcode) are required. If the FU supports only one operation or a

register file has only one general purpose register, the interface does not contain the

opcode port. The bit width of trigger data is either same as bus width or a subrange of

that (specified by the user). The bit width of opcode is
�
log2 K � , where K is either (a)

the number of operations supported by FU or (b) the number of GPRs in the register

file. Only FUs can have operand data inputs (o1data..oNdata). The bit width of

operand data is either the same as bus width or a subrange of that (specified by the user).

Each read port in a RF and each output port in a FU corresponds to a result data port

(r1data..rMdata).

Only register files need result opcodes, which indicate the GPR that drives data to an

output port. A register file with M write ports has thus exactly M result opcode ports

(r1opcode..rMopcode) in its interface. Again, the bit width of result opcodes is

4. New Processor Generator 44

Control

t1load

tIload

o1load

oNload

global_lock

r1load

rMload

cmp_result

lock_request

t1opcode[]

tIopcode[]

r1opcode[]

rMopcode[]

clk

rstx

fu_inst : fu_op1_opK_pipeline_latency
rf_inst: rf_Ird_Mwr

Result opcodes
(RFs)

Pipeline control
signals (SVTL)

Optional pipeline
control signal
(SVTL)

Special signals

Synchronization

t1data[Wt1−1:0]

tIdata[WtI−1:0]

o1data[Wo1−1:0]

oNdata[WoN−1:0]

r1data[Wr1−1:0]

rMdata[WrM−1:0]

External
interface

Interconnection
Networkunit

Standard
interface

Figure 19. General interface of functional unit / register file.

�
log2 K � , where K is the number GPRs in the register file. If a register file has only one

GPR, the interface does not contain the result opcode port.

Pipeline control ports are required for signals which control the FU pipelining. The

4. New Processor Generator 45

as0 : fu_add_sub_always_2
port map (
t1data => as0_t_data,
t1load => as0_t_load,
t1opcode => as0_t_opcode,
o1data => as0_o_data,
o1load => as0_o_load,
r1data => as0_r_data,
global_lock => global_lock,
clk => clk,
rstx => rstx);

Figure 20. FU instantiation in top-level VHDL description.

interface shown in Fig. 19 is for semi virtual-time-latching pipelining (Section 2.2.3).

For each input (trigger or operand) a load signal is required to indicate that new data is

to be loaded into the unit. If different pipelining scheme is used the interface is subject

to change.

Special signals class contains ports for special signals that have effect on processor

control. For example, a comparator result, cmp_result, can be bypassed to control

unit. Also, a unit that can halt the processor execution by requesting a lock. This is

indicated by a lock_request signal. An input port for active low reset (rstx) and

clock (clk) must be provided for each unit.

A port of a functional unit, which is not member of any class described above, has

be connected to an external port of the generated processor core. The external ports

of the processor core, and the connections from functional unit ports to the external

ports have to be explicitly specified by the user in input files called “external_ports” and

“fu_port_map”, respectively.

In order to be correctly used with the processor generator, input and output ports of a

functional unit/register file in the library must be designed according to this specifica-

tion. For example a generated component instantiation corresponding to the machine

description file entry from Fig. 15 is depicted in Fig. 20. A module/entity with name

fu_add_sub_always_2 has to be available in the library when the generated code is com-

piled. The ports on the left side of operator “=>” have to exist in the library component

fu_add_sub_always_2. The signals on the right side of “=>” are the wires, generated

by the processor generator, to which the ports are mapped. These wires are furthermore

connected to ports of control unit and interconnection network. A similar component

instantiation is performed for all the components of the processor core.

4. New Processor Generator 46

e1

e2

e3

e1

e2

Bus2

Bus1

Bus3

e1

Interconnection Network

R1 T1 R1 O1T1R2

FU1 FU2

Figure 21. Datapath realized with tristate drivers

4.2.2 Interconnection Network

Traditionally, bus demultiplexing in MOVE processors is realized by means of tristate

drivers. Support for two other interconnection network structures, which are more suit-

able for modern technologies, were selected for further evaluations.

Fig. 21 shows the detailed datapath of an interconnection network composed of three

transport buses, three result sockets and three input sockets. Result port (socket) R1

of FU1 is connected to all three buses whereas other ports (sockets) have more limited

connections. Shaded regions in the interconnection network represent the demultiplex-

ers contained in the result sockets. For each bus connection a tristate driver of bus

bitwidth is required in the demultiplexer. Each tristate driver is controlled by enable

signal, which is generated at control logic. When the enable signal for a particular tris-

tate driver is high, the data from the functional unit is driven to the bus. If the enable

signal is low, the output of the tristate driver is in high impedance state or floating, i.e.,

there is no low impedance path from buffer output to power lines. As a result, outputs of

several tristate buffers can be connected together, as long as only one driver is enabled

at a time. Tristate buses are commonly used in full custom designs, but in standard cell

based ASICs the use of tristate buses is not recommended. [19] Tristate buses require

specific production test structures in order to get stuck’at 1 and stuck’at 0 faults de-

tected. In addition, a standard cell library usually contains only a limited selection of

buffer sizes for tristate drivers. Too strong buffers has to be selected to drive the a bus

which typically has large capacitance due to fanout and wire length. This may result in

implementation that has exceedingly large area and power consumption. Tristate buses

reduce routing congestions as they can be driven from multiple physical locations. The

4. New Processor Generator 47

R1

FU1

T1

FU2

T1 O1R1 R2

Bus1

e1 e2 e3 e1 e2 e1

Bus2

Bus3

Interconnection Network

Figure 22. Datapath realized with AND-OR network

routability, however, is not typically a severe problem in modern process technologies

which have more than five metal layers available for wiring.

Demultiplexing can also be realized with AND-OR network [20]. Fig. 22 depicts a

datapath that is architecturally identical with one illustrated in Fig. 21. For each bus

connection an AND gate of bus bitwidth is required in the demultiplexers which are

presented as shaded regions in Fig. 22. AND gates, corresponding to FU outputs con-

nected to a given bus, are connected to the OR gate driving the bus. Each AND gate is

controlled by enable signal as was the case with the tristate drivers. If the enable is low

for a particular AND gate the output of the AND gate is pulled low. When the enable

signal for a particular AND gate is high, the logic value from FU output is propagated

to the output of the AND gate. Provided that only one AND gate per bus is enabled, the

logic value is further transmitted to the bus.

The datapath of the transport network of a TTA processor can be viewed as an intercon-

nection of multiplexers. The input sockets contain multiplexers to select from which

bus the functional unit trigger input or operand input reads data. For each bus there is

multiplexer that selects the FU output writing the data on the bus. The control signal for

a multiplexer is decoded from the corresponding source field of the instruction word.

Fig. 23 illustrates a datapath that is architecturally identical with ones illustrated in Fig.

21 and 22. As can be observed, the result sockets are no longer components of the

datapath.

Interconnection network is the communication medium for all the programmed data

traffic in the processor core. The network has an input port for every addressable source

4. New Processor Generator 48

FU2

R1 R2R1 T1 T1 O1

Bus3

Bus2

Bus1

FU1

src_id1

src_id2

src_id3

decode

decode

decode

Interconnection Network

Figure 23. Datapath realized with interconnection of multiplexers

location and an output port for every addressable destination location. These locations

are mainly trigger, operand, and result ports of functional units and register files but

also the control unit can access the datapath, for instance to read the jump address.

In addition to input and output ports for data, the interconnection network has inputs

for control signals of multiplexers and demultiplexers. For an input socket, connected

to n buses, a multiplexer control signal of
�
log2 n � bits is required. A demultiplexer,

connected to m buses requires m-bit control signal, because each AND gate and tristate

buffers has to independently controllable. For an interconnection network realized with

multiplexers the source field from the instruction word has to be provided to control the

logic of bus write selector.

A fragment of generated VHDL code for the interconnection network, corresponding

to an input socket is presented in Fig. 24. The input socket is connected to three buses

(1st, 3rd and 4th) and requires thus a 2-bit control signal. Each input socket in the target

processors is mapped into a similar process where the behavior of a multiplexer can be

described in VHDL.

Fig. 25 illustrates VHDL code corresponding to a result socket. The result socket

as0_r is connected to three buses (1st, 2nd and 4th) and requires a control bit for each

bus. Demultiplexer in this particular example is realized by a AND-OR network. For

each bus the result socket is connected, each bit of the result data from the functional

unit is ANDed with control bit corresponding to the bus connection and the output of

AND is assigned to intermediate data signal/wire (transport_busn_connm). The

intermediate data wires for a given bus are ORed and the output of the multiple input

4. New Processor Generator 49

as0_t : process (as0_t_cntrl , transport_bus1,
transport_bus3, transport_bus4)

begin -- process as0_t
case as0_t_cntrl is
when "00" =>

as0_t_data <= transport_bus1;
when "01" =>

as0_t_data <= transport_bus3;
when others =>

as0_t_data <= transport_bus4;
end case;

end process as0_t;

Figure 24. VHDL code for input socket.

OR is propagated on the transport bus. On the example depicted in Fig.25, the transport

bus 1 has five result sockets, including as0_r, connected to it.

4.2.3 Control Unit

The control unit of TTA processor generated by the processor generator is composed of

three functional units and instruction decoding logic, as shown in schematic presented

in Fig. 26. An instruction fetch unit to load instruction words from memory must be

present in every TTA processor. It contains a program counter (PC) register that is in-

cremented at each clock cycle. This auto-incrementing is overridden when a new value,

from if_t1data (See Fig. 26) is loaded to on jump or subprogram call. On jump,

only the program counter register is affected, whereas on call the contents of the PC is

loaded into a return address (RA) register. The PC write is indicated by if_t1load

and the jump and call are distinguished by t1_opcode signal. The contents of the

return address register can be read though if_r1data if the RA value needs to be

saved on nested subprogram calls. A new value is written to RA through if_t2data.

Hence, the instruction fetch unit contains three addressable locations, which can be ac-

cessed by a move. The instruction fetch unit must communicate with external memory

or cache where the instructions are loaded. This complicates automated generation of

the unit, because different memory interfaces has to be supported. At the moment, the

instruction fetch unit contains only simple interface to a read-only memory (ROM) and

no cache. The contents of the program counter is used as an address when the mem-

ory is accessed. The retrieved instruction word is propagated to other modules of the

control unit. For all practical purposes two additional functional units, immediate unit

and guard unit, are required in the control path to enhance the programmability of the

processor.

4. New Processor Generator 50

-- Demultiplexer for result socket as0_r
transport_bus1_conn1 <= ext(
as0_r_data and
sxt(as0_r_cntrl(0 downto 0), as0_r_data’length),
transport_bus1_conn1’length);

transport_bus2_conn1 <= ext(
as0_r_data and
sxt(as0_r_cntrl(1 downto 1),as0_r_data’length),
transport_bus2_conn1’length);

transport_bus4_conn2 <= ext(
as0_r_data and
sxt(as0_r_cntrl(2 downto 2),as0_r_data’length),
transport_bus4_conn2’length);

. . .
-- Write to transport_bus 1
transport_bus1 <= transport_bus1_conn1

or transport_bus1_conn2
or transport_bus1_conn3
or transport_bus1_conn4
or transport_bus1_conn5

Figure 25. VHDL code for result socket (AND-OR).

Some specific hardware must be allocated to evaluate the guard expressions, decoded

as binary words in the guard fields of the instruction word. The guard fields of the

instruction are delivered to the guard unit, in which the hardware resources required to

support conditional execution are located. If the guard expression is false, the move on

the corresponding bus is blocked, which is indicated to instruction decoding unit by a

squash signal. Since the boolean registers have to be directly accessible when the guard

expressions are evaluated, they are placed in the guard unit. The guard unit depicted

in Fig. 26 has an interface for one input socket for the boolean registers. A boolean

value from grd_t1data, typically a result of a comparison, is loaded into the boolean

register pointed by grd_opcode when grd_t1load is active.

The source field of the instruction word is composed of result socket address and op-

code part. The opcode part can be used as an immediate value (see Section 3.1). When

three stage instruction pipelining is employed, a register is required for each immediate

value so that the immediate can be specified in the same instruction, which it is trans-

ported. These registers are in the immediate unit. The structure of the immediate unit,

as well as guard unit, is dependent on the configuration of the target processor and thus

the processor generator is responsible for generating the hardware description for these

units.

In the instruction decoding unit, the contents of the instruction word is decoded into

pipeline control signals and opcodes for functional units and register files. Additionally,

4. New Processor Generator 51

data_in

Instruction
Decode
Unit

Registers
 Boolean

PC

RA

t1load t2load

fu1_t_load
fu1_t_opcode
fu1_t_cntrl
fu1_o_load
fu1_i:_cntrl
fu1_r_cntrl

immediate1

immediate2

Unit
Immediate

squash1
squash2

guard2

guard1

if_t1load
if_t1opcode
if_t2load

...

source1
destination1

source2
destination2

CONTROL UNITglobal_lock

Registers
Immediate

LogicDecode

Guard Unit

D
ec

od
e

L
og

ic

Fetch
Unit

enable

grd_opcode
grd_load

if_t2dataif_t1data lock_request grd_t1data

Instruction

+1

if_r1data

address

Figure 26. Control unit of processor with two buses.

the control signals for multiplexers and demultiplexers of the interconnection network

are generated at the instruction decoding. Fig. 27 illustrates a section of VHDL code for

instruction decoding, corresponding to an input socket. The address of the destination

field is compared against the hardwired socket ID for each bus the socket is connected

to. If the contents of the destination field matches with the ID the control registers of the

interconnection network as well as the opcode registers are updated accordingly when

the instruction to be decoded is at decode stage of the instruction pipeline. If there is

no match for any of the connections these registers retain their value from the previ-

ous clock cycle, which reduces power consumption. The (semi virtual-time latching)

pipeline control register, as0_t_load_reg, has to be always inactive if none of the

IDs match. The pipeline control signals and opcodes are taken from the corresponding

registers to functional units and register files, i.e., outside the control unit. Similarly, the

control signals to multiplexer and demultiplexer are redirected from the control unit to

the interconnection network. Due to the lack of space, a complete set of control signals

4. New Processor Generator 52

if ("00"&dst_id1(5 downto 2)&"00" = X"20"
and squash1 = ’0’) then

as0_t_cntrl_reg <= "00";
as0_t_opcode_reg <= dst_id1(1 downto 0);
as0_t_load_reg <= ’1’;

elsif ("00"&dst_id3(5 downto 2)&"00" = X"1c"
and squash3 = ’0’) then

as0_t_cntrl_reg <= "01";
as0_t_opcode_reg <= dst_id3(1 downto 0);
as0_t_load_reg <= ’1’;

elsif ("00"&dst_id4(5 downto 2)&"00" = X"18"
and squash4 = ’0’) then

as0_t_cntrl_reg <= "10";
as0_t_opcode_reg <= dst_id4(1 downto 0);
as0_t_load_reg <= ’1’;

else
as0_t_load_reg <= ’0’;

end if;

Figure 27. VHDL code for instruction decoding unit

is shown only for one functional unit, fu1, in Fig. 26.

4.3 Functional Unit Library

In order to utilize the designed processor generator in automated hardware design of

TTA processors, functional units and register files, instantiated in the generated top-

level netlist, had to be designed and implemented. Since the processor generator is

targeted for standard cell design methodology, also the functional units and register

files were designed from that aspect. Therefore, the functional units were described

in register transfer level behavioral VHDL. This enables design of relatively large set

of units within relatively short period of time. When a functional unit containing a

datapath element is designed in full custom techniques the unit has to be distinguished

not only by its architectural parameters but also on physical design constraints such as

minimum delay. The RTL code is more flexible in this respect. As well as portable to

different process technologies, the same RTL code can be used to describe a unit with

different design goals like high speed or small silicon area. It is up to the synthesis tool

to determine the specific architecture of datapath components. For example, a multiplier

is presented by a “*” operator in RTL code. Whether a Wallace tree or a carry-save array

multiplier is selected during synthesis, depends on the design constraints given to the

synthesis tool.

The designed functional units and register files are organized as a library, meaning that

4. New Processor Generator 53

they are stored in common database which can shared by several designers who work

with the processor generator. The library can be physically a directory in file system

or a compiled, tool specific object file. Once designed and placed or compiled in the

library the designed FU can be used in several processor designs. Since the RTL hard-

ware description language code for the functional units is intended to be used by various

designers and design automation tool and with different target technologies, the coding

style had to follow the guidelines set for good, reusable HDL code. A clear naming

conventions for the VHDL constructs in the functional unit designs was used consis-

tently throughout the library. A header was included in each source VHDL source code

file where the filename, version history and information about functional unit is given.

Moreover, generics and constants were used extensively instead of hardcoded literals.

[21] discusses the coding practices for reusable RTL code in more depth.

The designed library contains functional units that cover all integer operations that are

supported by the front-end of the software subsystem of the MOVE framework. With

this set of units, a TTA processor capable of executing any C language application can

be designed. Most of the designed functional units support more than one operation.

This enables operations to share sockets and input registers. For some operations, it is

also possible to share the core logic, on condition that the logic is not pipelined. For

example, addition and subtraction can be performed with one adder and some extra logic

and therefore these two operations can share a functional unit without any additional

cost. Only semi virtual-time latching pipelining was utilized designed functional units

due to its simple and efficient hardware structure.

A VHDL template for a generic SVTL functional unit with latency of three cycles is

presented in Appendix A. Fig. 28 depicts a block diagram corresponding to the func-

tional unit template. At default, the template corresponds to a following entry in the

machine description file:

always, 3, { fu1_o }, fu1_t, { fu1_r}, {op1,op2};

The VHDL template understandably respects the interface requirements set by the pro-

cessor generator. As was described in Section 2.2.3, the functional unit contains an

input register for each trigger input and operand input. In the VHDL template the

signals that correspond to trigger register, the first operand register and the first re-

sult register are t1_reg, o1_reg and r1_reg, respectively. If the interface of FU

is modified the input and output registers described in the VHDL has to be modified

accordingly. A separate sub-block can be designated for the core functional logic.

This logic can have internal pipeline stages, given that the pipelines for each opera-

4. New Processor Generator 54

t1_reg

x1

yMy1

result_en_reg

o1_reg

o1datat1data

r1data rMdata

r1_reg rM_reg

oNdata

oN_reg

xN

oNload
o1load
t1opcode
t1load

clk
rstx

fu_core

opc_reg

opc

x2

Figure 28. Functional unit block diagram.

tions performed at the logic have equal depths. The latency of the functional unit is

2+#internalpipelinestages. The core logic has to designed be the user, or alternatively

a suitable Synopsys DesignWare[22] component can be applied. If the functional unit

supports more than one operation, a shift register chain of length latency-1, named

opc_reg, is needed to store the opcodes of last latency-1 cycles. The last register in

the chain is used to select the result of operation presented by the opcode, to written to

the result registers and further to FU output. The selection should be done in the core

logic if possible. Another shift register chain, result_en_reg, is needed to store the

status of t1load signal, i.e. the activity of the FU for the last latency-1 cycles. The

last bit of the chain controls the latching of the data from the functional core logic to the

result register(s), so that new data is latched precisely latency-1 cycles after a operation

was triggered and otherwise the old value is retained.

There is less design freedom on the register files compared to the functional units. The

compiler of the MOVE framework assumes that the register files have fixed latency of

one. The only architectural parameters of the register files are thus the number read and

write ports and the number of GPRs. The HDL code for such register file is extremely

regular. Due to this, a simple generator script, again in Python, was written to generate

the VHDL code for a register file. The number of read and write ports are given to

the script as command line parameters. Register file size is a generic parameter, which

is fixed when the register file is instantiated in the processor design. As an example,

4. New Processor Generator 55

generated VHDL code for a register file with two write ports and two read ports is given

in Appendix B.

5. IMPLEMENTATION EXPERIMENTS

The developed processor generator, discussed in chapter 4, was used together with the

MOVE framework to design a bundle of transport triggered architecture ASIPs with dif-

ferent implementation and architectural parameters. The implemented processors were

evaluated in terms of delay, silicon area and power consumption, depending on evalu-

ation objectives. This chapter describes the implementations and the obtained results.

Section 5.1 discusses the general performance of the TTA template. In Section 5.2,

an important power saving method, clock gating, is applied on TTAs. Bus structures

supported in the processor generator are compared in Section 5.3.

In principal, the implementation flow is similar to conventional a standard cell ASIC

design flow, which is thoroughly explained, for example, in [23]. The VHDL code

obtained from the processor generator and predesigned libraries were used as design

entry. Functional verification and register transfer level simulation of the VHDL code

was performed using ModelSim mixed-language simulator (version 5.7c, 32-bit Linux-

platform). Synopsys Design Compiler (version 2002.05, 32-bit Linux-platform) was

used to translate the VHDL code to a netlist, composed of cells from modern (0.13 µm,

low-K dielectric, six layers of copper wiring, VDD 1.5 V) standard cell library. All the

presented implementation characteristics are acquired from the netlist-level designs us-

ing Design Compiler as an analysis tool. Switching activities required in power analysis

were obtained from gate-level simulation run on ModelSim. All delay calculations are

based on the worst case operating conditions, i.e., weak process, 125°C temperature,

and operating voltage of 1.35 V.

5.1 Performance Evaluation

Several application-specific processors were implemented to give insight on the hard-

ware aspects of standard cell based TTA processors. Motivation for the implementations

was to (a) verify that TTA architecture is actually a feasible choice for high performance

low-cost, embedded processor, (b) find the critical components or bottlenecks of the

5. Implementation Experiments 57

TTA processor in terms of cost and performance. Three small DSP applications were

used as benchmarks, for which the processors were optimized using the design space

explorer of the MOVE framework.

The first benchmark is an 8 � 8 discrete cosine transform (DCT) realized with row-

column approach, i.e., the entire two-dimensional (2-D) transform is computed with

the aid of 1-D transforms. Here the constant geometry algorithm proposed in [24] has

been used. Constant geometry algorithms being regular and modular allow better ex-

ploitation of the inherent parallelism.

The second benchmark is a 32-point DCT, where DCT algorithm described in [25]

is used. The created C-code contains five functions, one for each processing column

of the signal flow graph of the algorithm. Each processing column is written totally

unrolled, i.e., no iterations are used. This way the MOVE compiler was able to detect

and exploit the inherent parallelism of the algorithm. On the other hand, this sort of code

results in larger program code. Both the DCT applications were described in C language

using fractional data type, i.e., fixed-point representation where the number range is

normalized. Such a data type is often used in DSP realizations but it is difficult to

exploit in C compilers because the ANSI C does not contain predefined data type for

fractional representation.

The third benchmark is Viterbi decoding [26], an algorithm widely used in many decod-

ing and estimation applications in the communications and signal processing domain.

The algorithm decodes 256-state 1/2-rate convolutional codes and, contains path metric

computation and survivor path search. This algorithm, also written in C, contains more

complex control flow; conditional statements are also needed.

For each application, three configurations, high-performance, medium-size, and cost-

efficient, were manually selected from the set of Pareto points found in resource opti-

mization phase of the design space exploration. The high performance configuration

corresponds to processor, which has a large pool of hardware resources and thus the

instruction scheduler can exploit almost all the instruction level parallelism available in

application. In this configuration, the number of clock cycles is minimized but attain-

able clock cycle may be reduced due to the hardware complexity. In the cost-efficient

configurations the amount hardware resources are is lowered to minimum so that code

scheduling can be barely performed. This kind of configuration suits for applications

that do not have very high throughput requirements. The medium configuration is a

compromise between the high-performance and cost-efficient configurations. On the

medium-size configuration, the hardware resources were reduced significantly com-

5. Implementation Experiments 58

Table 2. Processor configurations

Application 32-point DCT

Configuration High-performance Medium Cost-efficient

Functional Units 2 Adders

1 Multiplier

2 Shifters

1 Load-Store

1 Adder

1 Multiplier

1 Shifter

1 Load-Store

1 Adder

1 Multiplier

1 Shifter

1 Load-Store

Interconnection Network 9 Buses 7 Buses 2 Buses

Register Files 2 � 1, 5 � 2

12 GPRs in total

2 � 1, 5 � 2

12 GPRs in total

3 � 1, 4 � 2

11 GPRs in total

Application 8 � 8 2-D DCT

Configuration High-performance Medium Cost-efficient

Functional Units 4 Adders

1 Multiplier

4 Shifters

1 Comparator

1 Sign-extend

2 Load-Stores

2 Adders

1 Multiplier

1 Shifter

1 Comparator

1 Sign-extend

2 Load-Stores

1 Adder

1 Multiplier

1 Shifters

1 Comparator

1 Sign-extend

2 Load-Stores

Interconnection Network 9 Buses 5 Buses 4 Buses

Register Files 7 � 12, 1 � 16

100 GPRs in total

4 � 4, 4 � 6

40 GPRs in total

6 � 2, 2 � 3

18 GPRs in total

Application Viterbi Decoding

Configuration High-performance Medium Cost-efficient

Functional Units 2 Adders

2 Logic

4 Shifters

2 Comparators

1 Sign-extend

2 Load-Stores

1 Adder

1 Logic

1 Shifter

1 Comparator

1 Sign-extend

1 Load-Store

1 Adder

1 Logic

1 Shifters

1 Comparator

1 Sign-extend

2 Load-Stores

Interconnection Network 6 Buses 5 Buses 3 Buses

Register Files 8 � 8

64 GPRs in total

4 � 6, 4 � 8

56 GPRs in total

6 � 4, 2 � 6

40 GPRs in total

pared to the high-performance configuration, but the number of clock cycles is within

20–30 percents of clock cycles of the high-performance configuration. In general, the

medium-size configuration is expected to offer the best cost/performance ratio.

5. Implementation Experiments 59

The three configurations optimized for the three testbench applications, are described

in Table 2. The processor configurations for the two DCT applications have very sim-

ilar set of functional units, as both of the algorithms can be presented as signal flow

graphs composed of additions/subtractions and multiplications. The shifter is required

for scaling the numbers in fractional representation to avoid overflows in additions. The

comparator is required in 8 � 8 DCT to test the loop conditions. In Viterbi decoding, a

multiplier is not needed at all but the comparator is used in add-compare-select opera-

tions in addition to loop status checks. Furthermore, a logic unit and shifter are needed

because bit-level manipulations are performed. It is notable that for none of the con-

figurations have particularly large set of functional units. On the composition of the

register files, the deviation between the processor configurations is more distinguish-

able. The Viterbi decoding seems to have the largest register pressure as even the very

cheap configuration needs a large number of general-purpose registers.

5.1.1 Full Connectivity

First, the nine processor configurations with fully connected interconnection network

were implemented and analyzed. Full connectivity guarantees reprogrammability, i.e.,

a processor with an interconnection network where all the sockets are connected to

all the buses can execute any application, given that the functional units provide the

required operations. As can be seen from Table 2, all the configurations of 32-point

DCT are subsets of all the configurations of 8 � 8 DCT. Reprogrammability can be an

advantageous property, for example, if a processor is used as a hardware accelerator on

a multimedia chip. Such a processor can be adopted to DSP tasks of future audio and

video standards by means of a software update. The results obtained from the analysis of

the implementations of the configurations of full connectivity are presented in Table 3.

For all the processor configurations, the design goal was to achieve the highest possible

clock frequency in order to find the maximum throughput for the testbench applications

on the MOVE architecture. This may result in lower energy efficiency and increased

area (gate count). The achieved clock frequencies range from 147 to 268 MHz. The

critical path of all the evaluated processor designs starts from the output register of the

instruction decode logic where a control signal for output demultiplexer is generated.

Then follows a route from the output of a functional unit or register file corresponding

to the demultiplexer through the interconnection network to the input of guard unit in

the control block. Since the bit written into a boolean register in a previous cycle has

to be accessible in guard evaluation of the next instruction, bypassing logic is needed in

5. Implementation Experiments 60

Table 3. Implementation results (full connectivity)

Application 32-point DCT

Configuration High-performance Medium Cost-efficient

Gate Count 71443 60585 26337

Clock Frequency / MHz 201 207 268

Throughput / Samples/s 16.9 16.2 9.5

Power / mW 45 40 20

Power / µA/MHz 150 130 50

Energy Efficiency / MSamples/J 380 410 490

Application 8 � 8 2-D DCT

Configuration High-performance Medium Cost-efficient

Gate Count 174075 77347 55438

Clock Frequency / MHz 147 205 245

Throughput / MPixels/s 8.53 9.20 5.90

Power / mW 97 59 40

Power / µA/MHz 440 190 110

Energy Efficiency / MPixels/J 90 160 150

Application Viterbi Decoding

Configuration High-performance Medium Cost-efficient

Gate Count 121624 98036 54151

Clock Frequency / MHz 181 191 184

Throughput KBits/s 85.4 74.3 39.1

Power / mW 67 62 32

Power / µA/MHz 250 220 120

Energy Efficiency / MBit/J 20 19 20

guard unit. This bypassing logic is also part of the critical path, followed by the logic

used in guard expression evaluation and finally the instruction decoding logic. Due to

the required bypassing the MOVE architecture contains a path that is actually spanned

over two stages of the transport pipeline, namely the move stage and decode stage (of

next instruction). It needs to be noted that both, the path through the actual intercon-

nection network and the path through the instruction decoding logic get more complex

as connections between sockets and buses are added. To conclude, the processor ar-

chitecture, not the performance of the arithmetic units limits the lowest attainable cycle

time. The obtained clock frequencies were somewhat lower compared to state of the art

standard cell processors [19].

For 32-point DCT and Viterbi decoding, the best overall throughput for each application

5. Implementation Experiments 61

was obtained with the largest configurations although they cannot run with as high clock

frequencies as the smaller configurations. For 8 � 8 DCT the highest megapixels-per-

second ratio was achieved with the medium configuration. On all applications, the low-

cost configurations resulted in the lowest throughput.

5.1.2 Optimized Connectivity

Full connectivity in the interconnection network results in complex hardware; specially

in processors, which have many transport buses. If a processor is designed for strictly

application-specific purposes, it is profitable to tailor the interconnection network for

the given application. Little, if any, modifications is allowed in the application code if it

is expected to be compiled to a processor with reduced connectivity between buses and

sockets. The connectivity exploration (Section 3.2.2) of the design space explorer was

used to optimize the interconnection networks of the nine processor configurations (Ta-

ble 2).

Again, the resulting configurations from the connectivity optimization were synthesized

and optimized for the maximum clock frequency. After that, the synthesized processor

designs were analyzed. The essential characteristics of the implementations are col-

lected to Table 4. Connectivity optimization provided significant improvement on the

performance of the processor designs.

As with the processors with full connectivity, the critical path of the all the processors

with optimized connectivity runs from a FU output through the interconnection network

and guard evaluation logic to the instruction decoding. On processors optimized for the

DCT benchmarks the unpipelined 32-bit multiplier with 32-bit output was also opti-

mized close to the limits of the technology. Less connections in datapath of transport

network results in faster and smaller multiplexers and demultiplexer. Similarly, control

logic is simplified because the range of addresses identified in instruction decoding is

smaller. Due to this, the delay of on critical path of the was reduced and higher clock

frequencies, ranging from 216 to 293 MHz, could be attained. On average, removing

unnecessary connection from the interconnection network resulted in gain of 33 per-

cents to clock frequencies. Consequently, the throughput of the applications run on the

processors, was equally increased as the number of clock cycles spent on the computa-

tion was not changed.

In five out of nine configurations, the dynamic power consumption was reduced com-

pared to their fully connected counterparts, despite the higher clock frequencies. Signifi-

5. Implementation Experiments 62

Table 4. Implementation results (optimized connectivity)

Application 32-point DCT

Configuration High-performance Medium Cost-efficient

Gate Count 39345 31061 23474

Clock Frequency / MHz 293 277 270

Throughput / Samples/s 24.7 21.7 9.8

Power / mW 38 43 18

Power / µA/MHz 86 78 44

Energy Efficiency / MSamples/J 650 670 540

Application 8 � 8 2-D DCT

Configuration High-performance Medium Cost-efficient

Gate Count 157560 61082 43018

Clock Frequency / MHz 240 290 272

Throughput / MPixels/s 13.8 13.5 6.6

Power / mW 107 62 35

Power / µA/MHz 298 141 85

Energy Efficiency / MPixels/J 129 219 190

Application Viterbi Decoding

Configuration High-performance Medium Cost-efficient

Gate Count 104362 83643 49187

Clock Frequency / MHz 256 216 269

Throughput KBits/s 116.3 83.7 59.3

Power / mW 75 52 37

Power / µA/MHz 195 161 92

Energy Efficiency / MBit/J 25 26 25

cantly lower normalized power figures (mA/MHz) and greatly improved energy efficien-

cies illustrate the benefits of the reduced interconnection network even more distinguish

ably.

5.2 Clock Gating Results

In many VLSI chips, power dissipation of the clocking system is often the largest por-

tion of total chip power consumption because the switching activity of clock networks

are equal to one and the total node capacitance is high due to the large number of clocked

nodes.

Clock gating is a design strategy that allows to mitigate the switching activity of the

5. Implementation Experiments 63

Multiplexer

data_ In

en

clk

data_out

Flip−Flop

Q D

0

1

Figure 29. Register bank with load enable using multiplexer

clock tree and its leaf registers. In order to reduce the activity of the clock node of a

register bank the clock node is enabled only when the register bank has to sample new

input. [27]

Without clock gating register banks are implemented by using a feedback loop and a

multiplexer. When such registers maintain the same value through multiple cycles, they

use power unnecessarily. Fig. 29 shows a simple register bank implementation using a

multiplexer and a feedback loop.

Clock gating means inserting a specific circuitry into the clock network of the register

bank and creating the control to eliminate unnecessary register activity. This principle

is depicted in Fig. 30. Clock gating also reduces the clock network power dissipation,

relaxes the data path timing, and reduces routing congestion by eliminating feedback

multiplexer loops. For designs that have large multi-bit registers, clock gating can save

power and reduce the number of gates in the design. However, for smaller register

banks, the overhead of adding logic to the clock tree might not compare favorably to

the power saved by eliminating a few feedback nets and multiplexers. The insertion of

the clock gating circuitry can be performed automatically by Synopsys Power Compiler

tool during the logic synthesis process and thus it does not have to be considered in the

HDL code. [22]

The effect of clock gating on transport triggered architectures was evaluated on three

processor configurations optimized for 8 � 8 DCT. The three configurations located in

different points of cost-performance space, are identical to ones used in performance

evaluations presented in Section 5.1. The high-performance, medium and cost-efficient

have 156, 82 and 59 register banks of full word width (32-bits), respectively. The largest

portion of the register banks belong general-purpose registers located in register files.

5. Implementation Experiments 64

data_in

en

clk

Flip−Flop

data_out

Latch

G

D Q Q D

Figure 30. Register bank with gated clock

The rest of the register banks are trigger, operand, and result registers of the functional

units. For all three configurations, a version which has unmanipulated clock tree, and a

version on which clock gating was applied, was synthesized and optimized with clock

frequency constraint of 100 MHz. Gate counts and power consumption figures for the

processor designs are illustrated in Table 5 for comparison.

Utilizing gated clocks proved to be a very efficient method to save energy in the pro-

cessor cores as power consumption was 34–37 percents lower when clock gating was

applied. As was predictable, the largest energy savings were achieved on the register

files. On each processor configuration their power consumption was lowered more than

65 percent by deactivating the clock signal when none of the registers in a RF needs

to be refreshed. As was the case with register files, also the power consumption of the

functional units was reduced considerably. However, for energy efficiency of the control

unit the clock gating did not give such a large improvement. This can be explained by

the fact that control unit, specifically the instruction decoding contains large number of

independent registers that cannot be composed into a bank controlled by single enable

signal. Moreover, also the silicon area of the cores, which is directly proportional to

gate count, was reduced.

5.3 Bus Structure Comparison

In Chapter 4, it was discussed that demultiplexing in the interconnection network estab-

lished using tristate drivers is not a feasible solution in modern standard cell designs.

The demultiplexer structures supported in the processor generator were evaluated in

order to determine whether the two new interconnection structures introduced in Sec-

tion 4.2.2 are suitable candidates to replace the tristate bus.

5. Implementation Experiments 65

Table 5. Clock gating results

High-performance

No Clock Gating Gated Clock

Power / mW 36 23

Gate Count / kgate 76.4 66.5

Medium

No Clock Gating Gated Clock

Power / mW 19 13

Gate Count / kgate 37.5 32.0

Low-Cost

No Clock Gating Gated Clock

Power / mW 13 8

Gate Count / kgate 26.0 22.6

As before, the three processor configurations adapted for the application realizing 8 � 8

DCT were used in evaluation of the bus structures. For all three configurations, a re-

vision for each demultiplexing method was implemented. Furthermore, each configu-

ration was realized with fully connected as well as optimized transport network using

VHDL code obtained from the processor generator and the library of functional units

as a design entry. Clock frequency of 100 MHz was used as an optimization constraint

in logic synthesis step where the HDL code was transformed into a technology specific

netlist. By analyzing and simulating the gate-level netlist the area and power character-

istics, shown in Table 6, were obtained.

On each realized processor configuration using both AND-OR network and multiplexer

based bus write selection resulted in smaller gate counts compared to configurations that

employed tristate buses. On the fully connected configurations, AND-OR demultiplex-

ing resulted on average 50 percent reduction in gate count of interconnection network

and almost as much on configurations with reduced connectivity. Both AND-OR net-

work and tristate bus have identical instruction decoding logic as similar enable signals

are used to control both tristate buffers and AND-gates. Therefore, there was practically

no difference in the gate count of control logic of tristate buses and AND-OR network

— all the area saving was achieved in datapath. Processor designs with AND-OR net-

work as demultiplexing structure resulted in average gate count reduction of 20 percent

on the fully connected designs and 8 percent in the connectivity optimized designs.

Also the multiplexer based bus write resulted in smaller gate counts in comparison to

the tristate bus. The area reduction was not, however, quite as large as with AND-OR

5. Implementation Experiments 66

Table 6. Bus structure comparison results

Full Connectivity

High-performance

Bus Structure AND-OR Tristate Multiplexer

Power / mW 37 38 47

Gate Count / kgate 87.3 107.3 99.2

Medium

Bus Structure AND-OR Tristate Multiplexer

Power / mW 17 17 19

Gate Count / kgate 37.9 47.9 38.7

Low-Cost

Bus Structure AND-OR Tristate Multiplexer

Power / mW 10 10 11

Gate Count / kgate 26.2 32.6 26.1

Optimized connectivity

High-performance

Bus Structure AND-OR Tristate Multiplexer

Power / mW 23 21 25

Gate Count / kgate 66.5 68.9 67.9

Medium

Bus Structure AND-OR Tristate Multiplexer

Power / mW 13 12 12

Gate Count / kgate 32.0 34.7 31.6

Low-Cost

Bus Structure AND-OR Tristate Multiplexer

Power / mW 8 8 8

Gate Count / kgate 22.6 25.9 22.5

network. This is due to the fact that logic that selects, which functional unit output drives

the bus using the source id as a control signal could not be to generated as effectively

at the logic synthesis. The instruction decoding logic was reduced, as a part of the

instruction decoding is performed at interconnection network. Nevertheless, this did

not compensate larger area originating from more complex transport network.

There is virtually no difference in power consumption of the processors utilizing AND-OR

demultiplexing and tristate buffers. In general, multiplexer based bus resulted in slightly

higher power consumption but differences were not significant compared to the other

two bus structures, except on the high-performance configurations.

5. Implementation Experiments 67

5.4 Discussion

To obtain even higher clock frequencies than presented in Section 5.1.2 the delay on the

critical path through the transport network can be reduced by assuming that the 1-bit

boolean values to the guard unit are always transported directly from the comparator

unit(s) and never from the functional units and register files processing and storing data

of full word width. To alleviate the bottleneck the boolean values can now be transported

through dedicated 1-bit buses, which have only a small number of connections as the

number of the comparators and guard unit input sockets is typically very small. Some-

times even a direct connection from the result register of the comparator unit to input of

guard unit is sufficient. Due to the very low number of connections the capacitive load

on these 1-bit buses is low and therefore the delay is decreased. The effect of the 1-bit

dedicated bus for the boolean values was tested on the medium and cost-efficient con-

figuration for the Viterbi decoding benchmark. The implementations resulted in clock

frequencies of 286 MHz for the medium configuration and 308 MHz for the cost effi-

cient configurations. The improvement to the processor designs where boolean values

are transported on normal transport buses was 24 percent and 17 percent, respectively.

The comparisons are not, however, completely justifiable because the configurations

where the 1-bit bus was utilized were obtained through new connectivity exploration

form the fully connected configuration as the compiler was not able to generate code

for the original connectivity optimized processors, on which a bus from the output of

the comparator to guard unit was added afterwards. A point worth mentioning is that

the number of clock cycles was also decreased when dedicated bus for the comparator

results was available.

As CMOS process geometrics shrink, the delay attributable to interconnection, i.e., the

wiring between the active devices, is starting do dominate over the gate delay. Designers

have had to take into account the effect of wire on the large chip level designs. When the

effective gate length is decreased to 90 nm and below the effect of wiring has to be con-

sidered even on designs of gate count under 100 kgates, such as the MOVE processors

cores discussed in this chapter. [28] [29]

During the synthesis the capacitances and thus the delays associated with final wiring are

unknown. Models of interconnect, known as wire-load models [29], attempt to predict

the amount of capacitance in a wire by reducing it to function of fanout and block size.

In this approach a single capacitance value is used for all nets in a block with the same

fanout. Obviously, the capacitance values for nets in a block will vary and so the wire-

load model is necessarily only an approximation of the actual future capacitance. If the

5. Implementation Experiments 68

capacitance in wires increase, then wire-load models become increasingly inaccurate.

Another problem rises on defining the blocks or hierarchy during the synthesis. A logi-

cal block, such as the transport network of TTA processor may not result in an uniform

region of placed gates on silicon. For this reason, the wire load model of the intercon-

nection network of the processor designs presented in this chapter was enlarged to cover

the entire core area. It is likely that many of the buses span over the entire core but for

some of the buses such assumption may be too pessimistic. Such an oversizing of wire-

load model can skew the results of bus comparison as one interconnection structure may

be more sensitive to the increase of bus load than other.

On the other hand, assuming that the resulting placement of cells for some other building

blocks, e.g., register files, reside on a restricted region may have been too optimistic.

These problems can get even worse due to increased ratio of coupling capacitances to

substrate capacitances caused by reduction of wire aspect ratios. In general, the effect of

wiring undermines the reliability of the implementation results presented in this chapter.

6. CONCLUSIONS

In this thesis, design of a processor generator for transport triggered architecture tem-

plate of the MOVE framework was described. Important design goal for the developed

processor generator was to improve the usability and reliability of the MPG, the orig-

inal processor generator of the MOVE Framework. This was achieved by reading the

properties of the target processor from the machine description file and map file. These

files respectively contain information the on the structure and binary encoding of the

target processor, and are used as information exchange format by rest of the tools of

the MOVE framework. Support for three different demultiplexing structures was also

incorporated to the processor generator. Furthermore, the inherent modularity of TTA is

exploited by defining a clear and consistent interface for the functional units and register

files instantiated by the processor generator. A prototype functional unit honoring this

interface specification employing the semi-virtual time latching pipeline control disci-

pline was also developed. Given this prototype, a set of functional units realizing all the

integer operations supported by the software subsystem of the MOVE framework was

designed. Moreover, a generator script for the register files was written.

Using the design space explorer of the MOVE framework a set of processor configu-

rations for three DSP benchmark applications, 32-point DCT, 8 � 8 DCT, and Viterbi

decoding, were obtained. To examine the hardware characteristics and performance of

the TTA template of the MOVE framework, these processor configurations were imple-

mented using the VHDL code produced by the processor generator as the design entry.

VHDL code for each processor configuration was synthesized to modern 0.13 µm stan-

dard cell technology and the obtained to netlists were analyzed to gain information on

the performance, silicon area, and power consumption of the processor designs. Fur-

thermore, combining the hardware performance and the cycle count statistics from the

software subsystem, the performance of the test applications on the processor designs

was measured. On processor configurations with fully connected network the maximum

clock frequencies were somewhat lower than clock frequencies of the fastest processors

implemented with standard cell technology. By optimizing the connectivity of the in-

terconnection network significant gain was achieved on performance and energy effi-

6. Conclusions 70

ciency of the processors. By analyzing the critical path of the processor, it was found

that on the Viterbi decoding where no multiplier was required, the architecture rather

the performance of the arithmetic units limits the attainable clock frequency. The de-

lay of the critical path can be alleviated by dedicating 1-bit buses for boolean value

transports from the comparator to the guard unit. In addition to performance analy-

sis, three bus demultiplexing structures, tristate, AND-OR, and multiplexer-based, were

evaluated and compared. Although the difference between the bus structures in terms

of power consumption and gate count was found quite small, the AND-OR structure

performed slightly better than the multiplexer based bus and thus it can proposed as the

replacement for the tristate bus in standard cell implementations. Lastly, clock gating,

a widely used power saving method in standard cell designs, was evaluated on TTAs. It

was discovered that applying clock gating not only results in considerably lower power

consumption but it also reduces the silicon area of the processor designs.

The developed processor generator produces functionally correct VHDL code that can

be synthesized efficiently. The tool can be, however, improved and developed further in

number of ways. The generated control unit currently contains very simple instruction

fetch unit that has a fixed interface for a clocked ROM, from which the instructions

are read. Different memory hierarchies, i.e., caches, and memory interfaces should be

supported in flexible manner as well as program code decompression circuitry. There

exist plenty of possibilities to enhance the usability of the processor generator. For

example, user-friendly interface to add and manage user defined functional units in the

library of FUs could be developed. In addition, third party design automation tools

should be more tightly incorporated in the processor generator. This would mean that

makefiles, synthesis scripts and setup files required to import and compile the produced

VHDL code should be generated automatically.

To validate the results obtained from the analysis of the netlist level processor designs

the should be elaborated closer to real physical implementations. By performing stan-

dard cell placement and initial routing more accurate information on wiring capaci-

tances is available. The delay calculations based on physical placement of the gates

provides more reliable information on the true timing bottlenecks of the processor de-

signs. When the placed-gates and netlist-level designs are compared it is possible to

evaluate whether the netlist and correctly chosen wire-load models provide sufficiently

accurate information on the physical characteristics of the processor designs.

BIBLIOGRAPHY

[1] H. Corporaal and M. Arnold, “Using transport triggered architectures for embed-

ded processor design,” Integrated Computer-Aided Engineering, vol. 5, no. 1, pp.

19–38, 1998.

[2] H. Corporaal, Microprocessor Architectures: From VLIW to TTA. Chichester,

UK: John Wiley & Sons, 1997.

[3] S.Rixner, W. J. Dally, B. Khailany, P. R. Mattson, U. J. Kapasi, and J. D. Owens,

“Register organization for media processing,” in Proc. of 6th Annual Int. Symp. on

High-Performance Computer Architecture, 2000, pp. 375–386.

[4] V. S. Lapinskii, M. F. Jacome, and G. A. de Veciana, “Application-specific clus-

tered VLIW datapaths: early exploration on a parameterized design space,” IEEE

Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 8,

pp. 889–903, 2002.

[5] A. Cilio, “Code generation and optimization for embedded processors,” Ph.D. dis-

sertation, Delft Univ. Tech., Delft, The Netherlands, Sep. 2002.

[6] J. Hoogerbrugge, “Code generation for transport triggered architectures,” Ph.D.

dissertation, Delft University of Technology, Delft, The Netherlands, Feb. 1996.

[7] H. Corporaal and J. Hoogerbrugger, “Register file port requirements of transport

triggered architectures,” in 27th Annual Workshop on Microprogramming, 1995,

pp. 191–195.

[8] H. Corporaal and J. Janssen, “Partitioned register files for TTAs,” in 28th Annual

Workshop on Microprogramming, 1996, pp. 303–312.

[9] J. Janssen, “Compilation strategies for transport triggered architectures,” Ph.D.

dissertation, Delft University of Technology, Delft, The Netherlands, Sep. 2001.

Bibliography 72

[10] H. Corporaal and P. A. Arend, “MOVE32INT, a sea of gates realization of a

high performance transport triggered architecture,” Microprocessing and Micro-

programming, no. 38, pp. 53–60, Sep. 1993.

[11] J. M. Rabaey, Digital integrated circuits: a design perspective. Upper Saddle

River, NJ, U.S.A: Prentice-Hall, Inc., 1996.

[12] E. Aardoom and P. Stravers, “An application specific processor for a multi-system

navigation receiver,” in Proc. of International Conference on Computer Design:

VLSI in Computers and Processors, 1992, pp. pp. 128–131.

[13] M. Arnold, “Instruction set extensions for embedded processors,” Ph.D. disserta-

tion, Delft University of Technology, Delft, The Netherlands, Mar. 2001.

[14] A. Smit, “The MPG manual,” Master’s thesis, Delft Univ. Tech., Delft, The Nether-

lands, Jun. 2000.

[15] S. Roos, “Design and implementation of an advanced instruction fetch unit for the

MOVE framework,” Master’s thesis, Delft Univ. Tech., Delft, The Netherlands,

Jun. 1997.

[16] IEEE Standard VHDL Language Reference Manual, IEEE Std. 1076-1993, 1994.

[17] IEEE standard Verilog hardware description language, IEEE Std. 1364-2001,

2001.

[18] G. van Rossum, Python reference manual, Centrum voor Wiskunde en Informat-

ica, 1995.

[19] D. Chinnery and K. Keutzer, Closing the Gap Between ASIC & Custom. Boston,

MA, U.S.A: Kluwer Academic Publishers, 2002.

[20] M. D. Ercegovac, J. H. Moreno, and T. Lang, Introduction to Digital Systems.

New York, NY, U.S.A: John Wiley & Sons, Inc., 1998.

[21] M. Keating and P. Bricaud, Reuse methodology manual: for system-on-a-chip de-

signs. Norwell, MA, U.S.A: Kluwer Academic Publishers, 1998.

[22] Synopsys Online Documentation, Synopsys, 2002.

[23] M. Smith, Application-specific integrated circuits. Boston, MA, U.S.A: Addison-

Wesley Longman Publishing Co., Inc., 1997.

Bibliography 73

[24] J. Kwak and J. You, “One- and two-dimensional constant geometry fast cosine

transform algorithms and architectures,” IEEE Trans. Signal Processing, vol. 47,

no. 7, pp. 2023–2034, July 1999.

[25] J. Takala, D. Akopian, J. Astola, and J. Saarinen, “Constant geometry algorithm

for discrete cosine transform,” IEEE Trans. Signal Processing, vol. 48, no. 6, pp.

1840–1843, June 2000.

[26] A. J. Viterbi, “Error bounds for convolutional coding and an asymptotically op-

timum decoding algorithm,” IEEE Trans. Inform. Theory, vol. 13, pp. 260–269,

Apr. 1967.

[27] G. Palumbo, F. Pappalardo, and S. Sannella, “Evaluation on power reduction ap-

plying gated clock approaches,” in Proc. IEEE Int. Symposium on Circuits and

Systems, 2002, pp. IV–85–IV–88 vol.4.

[28] P. Gopalakrishnan, A. Odabasioglu, L. Pileggi, and S. Raje, “An analysis of the

wire-load model uncertainty problem,” IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, no. 1, pp. 23–31, Jan. 2002.

[29] D. Sylvester and K. Keutzer, “Getting to the bottom of deep submicron,” in Proc.

of the 1998 IEEE/ACM international conference on Computer-aided design, 1998,

pp. 203–211.

Appendix A

FUNCTIONAL UNIT TEMPLATE

-- Title : Functional unit template

-- Project : FlexDSP

5 -- File : fu_template.vhdl

-- Author : Jaakko Sertamo <sertamo@vlad.cs.tut.fi>

-- Company : TUT/IDCS

-- Created : 2003-03-11

-- Last update: 2003-09-24

10 ---

-- Description: Functional unit template for SVTL pipelined FU

--

-- This template can be used as a basis when a new functional unit needs to be

-- designed. At default, this template corresponds at a following definition

15 -- in the machine description file:

-- fu1 always, 3, { fu1_o }, fu1_t, { fu1_r}, {op1, op2};

--

-- Copyright (c) 2003

20 ---

-- Revisions :

-- Date Version Author Description

-- 2003-03-11 1.0 sertamo Created

25

-- Package declaration for op1_op2 unit opcodes

30 package op1_op2_opcodes is

constant OPC_OP1 : integer := 0;

constant OPC_OP2 : integer := 1;

35 end op1_op2_opcodes;

-- Entity declaration for the functional unit

40 ---

library IEEE;

use IEEE.Std_Logic_1164.all;

use IEEE.std_logic_arith.all;

45 use work.op1_op2_opcodes.all;

entity fu_op1_op2_always_3 is

generic (

DATAW : integer := 32;

50 BUSW : integer := 32);

port (

-- clock and reset

75

clk : in std_logic;

rstx : in std_logic;

55

-- FU DATA INPUTS

-- trigger input

t1data : in std_logic_vector (DATAW-1 downto 0);

-- operand input(s)

60 o1data : in std_logic_vector (DATAW-1 downto 0);

--oNdata : in std_logic_vector (DATAW-1 downto 0);

-- result output(s)

r1data : out std_logic_vector (DATAW-1 downto 0);

--rMdata : out std_logic_vector (DATAW-1 downto 0);

65

-- FU CONTROL INPUTS

t1opcode : in std_logic_vector (0 downto 0);

t1load : in std_logic;

o1load : in std_logic;

70 --oNload : in std_logic;

global_lock : in std_logic);

end fu_op1_op2_always_3;

75 architecture rtl of fu_op1_op2_always_3 is

component userdef_logic

generic (

X1WIDTH : integer;

80 X2WIDTH : integer);

port (

clk : in std_logic;

rst_n : in std_logic;

85 x1 : in std_logic_vector(X1WIDTH-1 downto 0);

x2 : in std_logic_vector(X2WIDTH-1 downto 0);

y1 : in std_logic_vector(X1WIDTH-1 downto 0);

--yM : in std_logic_vector(X1WIDTH-1 downto 0);

opc : in std_logic_vector(0 downto 0));

90 end component;

type std_logic_vector_array is array (natural range <>) of

std_logic_vector(t1opcode’length-1 downto 0);

95 -- REGISTERS

-- trigger register

signal t1reg : std_logic_vector (DATAW-1 downto 0);

-- operand register(s)

signal o1reg : std_logic_vector (DATAW-1 downto 0);

100 --signal oNreg : std_logic_vector (DATAW-1 downto 0);

-- result register(s)

signal r1reg : std_logic_vector (DATAW-1 downto 0);

--signal rMreg : std_logic_vector (DATAW-1 downto 0);

105 -- opcode register

signal opc_reg : std_logic_vector_array(1 downto 0);

signal result_en_reg : std_logic_vector(1 downto 0);

-- WIRES

110 signal r1 : std_logic_vector (DATAW-1 downto 0);

--signal rM : std_logic_vector (DATAW-1 downto 0);

begin -- rtl

115 -- Instantiate user defined component (Or a DesignWare component)

fu_core : userdef_logic

generic map (

X1WIDTH => DATAW,

X2WIDTH => DATAW)

120 port map (clk => clk, -- userdef logic is pipelined

rst_n => rstx, -- userdef logic needs reset

opc => opc_reg(opc_reg’length-1),

x1 => o1reg,

x2 => t1reg,

125 y1 => r1

--yM => rM

76

);

pipeline_control : process (clk, rstx)

130 begin -- process pipeline_control

if rstx = ’0’ then

-- reset registers

t1reg <= (others => ’0’);

135 o1reg <= (others => ’0’);

--oNreg <= (others => ’0’);

r1reg <= (others => ’0’);

--rMreg <= (others => ’0’);

140 result_en_reg <= (others => ’0’);

for i in 0 to opc_reg’length-1 loop

opc_reg(i) <= (others => ’0’);

end loop; --

145 elsif clk = ’1’ and clk’event then

if t1load = ’1’ then

t1reg <= t1data;

end if;

150

if o1load = ’1’ then

o1reg <= o1data;

end if;

155 --if oNload = ’1’ then

-- oNreg <= oNdata;

--end if;

for i in 0 to result_en_reg’length-1 loop

160 if i = 0 then

-- latch data to register chain

result_en_reg(0) <= t1load;

opc_reg(0) <= t1opcode;

else

165 -- propagate register chain

result_en_reg(i) <= result_en_reg(i-1);

opc_reg(i) <= opc_reg(i-1);

end if;

end loop; -- i

170

-- update result only when new operation was

-- triggered \latency-1 cycles ago

if result_en_reg(result_en_reg’length-1) = ’1’ then

r1reg <= r1;

175 --rMreg <= rM;

end if;

end if;

end process pipeline_control;

180

-- connect registers to output ports

r1data <= r1reg;

--rMdata <= rMreg;

185 end rtl;

Appendix B

REGISTER FILE

-- Title : Register File for TTA

-- Project : FlexDSP

5 -- File : rf_2wr_2rd.vhdl

-- Author : Jaakko Sertamo <sertamo@vlad.cs.tut.fi>

-- Company : TUT/IDCS

-- Created : 2003-15-04

-- Last update:

10 ---

-- Description: 2 Write port(s)

-- 2 Read port(s)

-- Copyright (c) 2003

15 ---

-- Revisions :

-- Date Version Author Description

-- 2003-15-04 1.0 sertamo Created

20 library IEEE;

use IEEE.Std_Logic_1164.all;

use IEEE.std_logic_arith.all;

use work.util.all;

25 entity rf_2wr_2rd is

generic (

dataw : integer := 32;

rf_size : integer := 8);

port(

30 t1data : in std_logic_vector (dataw-1 downto 0);

t1opcode : in std_logic_vector (bit_width(rf_size)-1 downto 0);

t1load : in std_logic;

t2data : in std_logic_vector (dataw-1 downto 0);

35 t2opcode : in std_logic_vector (bit_width(rf_size)-1 downto 0);

t2load : in std_logic;

r1data : out std_logic_vector (dataw-1 downto 0);

r1opcode : in std_logic_vector (bit_width(rf_size)-1 downto 0);

40 r1load : in std_logic;

r2data : out std_logic_vector (dataw-1 downto 0);

r2opcode : in std_logic_vector (bit_width(rf_size)-1 downto 0);

r2load : in std_logic;

45

rstx : in std_logic;

clk : in std_logic);

end rf_2wr_2rd;

50 architecture rtl of rf_2wr_2rd is

type reg_type is array (natural range <>) of std_logic_vector(dataw-1 downto 0);

signal reg : reg_type (rf_size-1 downto 0);

78

signal r1_reg : std_logic_vector(dataw-1 downto 0);

signal r2_reg : std_logic_vector(dataw-1 downto 0);

55

begin

outputregs : process (clk, rstx)

variable opc : integer;

60 begin -- process ouputregs

if rstx = ’0’ then -- asynchronous reset (active low)

r1_reg <= (others => ’0’);

r2_reg <= (others => ’0’);

65 elsif clk’event and clk = ’1’ then -- rising clock edge

if r1load = ’1’ then

if t1load = ’1’ and t1opcode = r1opcode then

r1_reg <= t1data;

elsif t2load = ’1’ and t2opcode = r1opcode then

70 r1_reg <= t2data;

else

opc := conv_integer(unsigned(r1opcode));

-- pragma synthesis_off

if opc > rf_size-1 then

75 opc := rf_size-1;

end if;

-- pragma synthesis_on

r1_reg <= reg(opc);

end if;

80 end if;

if r2load = ’1’ then

if t1load = ’1’ and t1opcode = r2opcode then

r2_reg <= t1data;

85 elsif t2load = ’1’ and t2opcode = r2opcode then

r2_reg <= t2data;

else

opc := conv_integer(unsigned(r2opcode));

-- pragma synthesis_off

90 if opc > rf_size-1 then

opc := rf_size-1;

end if;

-- pragma synthesis_on

r2_reg <= reg(opc);

95 end if;

end if;

end if;

end process outputregs;

100

regfile_write : process(clk, rstx)

variable opc : integer;

begin

if rstx = ’0’ then

105 for idx in (reg’length-1) downto 0 loop

reg(idx) <= (others => ’0’);

end loop; -- idx

elsif clk = ’1’ and clk’event then

110 if (t1load = ’1’) then

opc := conv_integer(unsigned(t1opcode));

reg(opc) <= t1data;

end if;

115 if (t2load = ’1’) then

opc := conv_integer(unsigned(t2opcode));

reg(opc) <= t2data;

end if;

end if;

120

end process regfile_write;

r1data <= r1_reg;

r2data <= r2_reg;

125

end rtl;

