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Abstract. Processor simulators are important parts of processor design toolsets
in which they are used to verify and evaluate the properties of the designed pro-
cessors. While simulating architectures with independent function unit
pipelines using simulation techniques that avoid the overhead of instruction bit-
string interpretation, such as compiled simulation, the simulation of function unit
pipelines can become one of the new bottlenecks for simulation speed.

This paper evaluates commonly used models for function unit pipeline re-
source conflict detection in processor simulation: a resource vector based-model,
and an finite state automata (FSA) based model. In addition, an improvement to
the simulation initialization time by means of lazy initialization of states in the
FSA-based approach is proposed. The resulting model is faster to initialize and
provides equal simulation speed when compared to the actively initialized FSA.
Our benchmarks show at best 23 percent improvement to the initialization time.

1 Introduction

Processor simulators possess different level of accuracy depending on their purpose.
Instruction set simulation is mainly used for program verification and development in
cases which do not require detailed modeling of timing. More accurate cycle-based sim-
ulators can produce cycle counts and utilization statistics for directing processor design
space exploration – a process of finding the most suitable processor architecture for
the applications at hand. In automated design space exploration of application-specific
processors, the number of examined candidate architectures can reach thousands, thus
the time it takes to produce the utilization data and cycle counts for each explored ar-
chitecture can affect the total exploration time dramatically.

Structural hazards are situations in which multiple operations or instructions try to
use the same processor resource simultaneously. Commonly, structural hazards result
in processor stall cycles in which the processor waits mostly idle for the hazard to
resolve. Cycle-accurate simulators detect these stall cycles and model them accurately.
At minimum, the stall cycles should be counted and added to the total cycle count.
On the other hand, some architectures, such as the Transport Triggered Architectures
(TTA) [1] do not provide hardware locking support in case of structural hazards. In this
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case, the detection of structural hazards during simulation is a fundamental part of the
program verification process.

Simulation of statically scheduled architectures with relatively simple control logic,
such as VLIWs and TTAs, concentrates on simulating the data transports between func-
tion units and register files, the functionality of operations in function units, and the
function unit latencies. In this type of simulators, especially if the simulation over-
head of instruction decoding phase is avoided, simulating the function units and their
pipelines can become the new bottleneck for simulation speed.

This paper evaluates models to detect function unit pipeline resource conflicts in
cycle-accurate simulation: a resource vector based-model and an finite state automata
(FSA) based model. Finally, an improvement to the simulation initialization time by
means of lazy initialization of states in the FSA-based approach is proposed and evalu-
ated. Using this model, our benchmarks show that up to 23 percent improvement to the
simulation initialization time can be achieved.

The rest of paper is organised as follows. Section 2 analyses existing solutions for
improving processor simulation speed. Section 3 gives brief overview of common book
keeping methods for structural hazard detection during instruction scheduling and sim-
ulation. Section 4 describes our test setup, followed by Section 5 with results from
the performed experiments. Section 6 concludes the work and outlines future research
directions.

2 Related Work

Several research papers discuss the techniques to avoid the instruction bit string in-
terpretation overhead during simulation. These techniques are commonly referred to
as “compiled simulation”. For example, Shade is a simulator which includes a tech-
nique for translating the simulated instructions dynamically to host instructions during
simulation and caching the translated instructions for later execution [2]. However, the
presented work is a simulator with functional accuracy, as detecting structural hazards
and other microarchitectural details required for cycle-accuracy are not discussed.

JIT-CCS technique applies just-in-time (JIT) compilation, common in Java virtual
machines, to instruction set simulation. This technique removes the limitation of trans-
lating simulator not capable of simulating self-modifying code [3]. Use of JIT tech-
niques for simulation is explored also in DynamoSim, which improves the simulator
flexibility by combining interpretive and compiled techniques by compiling only parts
of the simulation that benefit the most [4]. The paper also extends the scope of the sim-
ulation compilation from basic blocks to traces to exploit better the instruction-level
parallelism capabilities of the host processor.

FastSim uses the idea of compiled simulation in detailed out-of-order microarchitec-
tural simulation [5]. The main contribution of the paper is a technique to “memoize”
microarchitectural configurations and “fast-forward” the actions to the processor state
when the simulation enters a previously executed microarchitectural configuration. The
idea is extended in [6] with a language for easy implementation of this type of “fast-
forwarding” simulators.
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Pees, Hoffman, and Meyr present an architecture description language LISA, which
allows generating compiled processor simulators for several architectures automatically
[7,8]. The resulting simulators are cycle-accurate thanks to the capabilities of the lan-
guage to allow detailed modeling of pipeline resources used by the instructions. Similar
work is presented in [9] in which ANSI C is used to model the instructions to avoid a
new modeling language.

An interesting simulation speedup technique worth noting is “token-level simula-
tion” [10] and “evaluation reuse” [11]. The principle of these techniques is to simulate
the program first in functional level for obtaining the basic block traces. Using the basic
block traces, the accurate cycle count is produced by evaluating the effects of each ba-
sic block to the processor pipeline state but without simulating the actual functionality
again since it has already been performed in the previous faster pass. This technique
seems very promising for speeding up the collection of the total cycle counts but does
not produce cycle-accurate simulation for exact timing or debugging features such as
cycle-stepping, due to the separation of the functional and timing simulation.

Literature covering techniques for speeding up processor simulation, in general, is
widely available. However, avoiding the bottlenecks in simulation of architectures with
independent function unit pipelines is rarely discussed. This paper considers in partic-
ular the bottlenecks in simulating such architectures.

3 Structural Hazard Detection in Simulation

This section gives a brief overview of the most common methods for keeping book of
structural hazards during simulation or instruction scheduling.

3.1 Resource Vectors

Reservation table is a two-dimensional (2D) table with one dimension representing the
machine resources and the other one representing the latency cycles [12,13]. A resource
usage is marked by placing ‘X’ in the table cell at the position of the cycle and the
resource. The same information can be represented in a 1D structure called resource
vector. A column in this vector lists all resources that are reserved at a cycle [14].

When using this table for resource modeling, the simulator keeps book of the occu-
pied resources at each cycle of the simulation in a composite resource vector. Before
an operation or instruction is to be executed in the simulator, conflicts are detected by
comparing the composite resource vector to the resource usage of the candidate oper-
ation. In case there are overlapping resource usages between the candidate operation’s
resource vector and the composite vector, a structural hazard is detected. Otherwise, the
composite vector is updated to reflect the resources occupied by the started operation.

3.2 Finite State Automata

The resource vector based structural hazard detection scheme can be refined to a more
advanced version by exploiting a Finite State Automaton (FSA) [15] for representing
all the legal state transitions in the processor.
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0 0 0 0 0 0
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NOP

Fig. 1. Resources modeled with a finite state automaton

In the FSA-based approach, each state is represented by a collision matrix, a 2D table
S, which contains rows for each operation and as many cycle columns as the longest
latency operation or instruction requires. The element S[o,t] is 0 only if operation o does
not “collide” when issued t cycles later after entering the state. That is, if S[o,1] = 0, the
operation o can be issued at the next cycle after entering state S, resulting in a transition
to state S′. The collision matrix of the target state is computed by shifting the collision
matrix of the starting state to the left (which simulates a cycle advance) and ORing it
with the issued operation’s collision matrix. [12]

Figure 1 illustrates an example automaton for a function unit with two operations:
ADD and MUL. The FSA can be used to quickly detect the legal operation sequences
that can be executed by the function unit. For example, in the automaton, it is easy
to notice that after executing ADD, it is possible to execute both ADD and MUL but,
after executing MUL, three cycles are needed (issue NOPs or stall the processor) before
issuing new operations.

The FSA-based conflict detection models are known to be very fast, but their initial-
ization time can be long due to large number of states in the automaton that need to
be built based on the operation resource usage patterns. This leads to an optimization
to the FSA-based approach which is also evaluated in this paper. One of the evaluated
models is an FSA-based model in which the states are built “lazily” the first time they
are entered, hoping to reduce the initialization time to a minimum. The optimization
is derived from the observation that in many cases only the minority of the states are
visited by the simulated program, thus, the construction time for the unused states is
wasted.

4 Test Setup

We evaluated different models for function unit resource conflict detection during sim-
ulation by implementing them in our TTA simulator [16] and executing synthetic sim-
ulations of function units using these models.

The initialization times were evaluated by initializing each model 100 000 times in
a row and the total time was measured.

The simulation speed of each model was measured by simulating sequences of oper-
ations and by measuring the total real time it took to simulate the operation sequence.
Each operation in each function unit was executed in round-robin fashion in successive
cycles with total of 10 000 000 operation executions. All resource conflicts reported by
the models were caught and ignored.

The measurements were made in a Pentium 4 CPU with 3.4 GHz clock and 1 GB of
RAM. The operating system was Ubuntu Linux 6.10, with GNU GCC compiler version
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0 1 2
MUL R A A+W

Fig. 2. Resource vector for multiplication with three resources R, A and W

4.1.1-13ubuntu5. The compiler optimization switch used to compile the models was
’-O3’. All the tests were executed under equal overall system load after a fresh boot.
Each test was run three times in a row and the best result was picked. Picking the best
result instead of, for example, the average, allowed us to evaluate the peak speed each
model can reach. However, the differences between the results were negligible.

The following conflict detection models were evaluated:

none. A model without conflict detection. This model simulates only the operation
latency, but does not detect if there are conflicting pipeline resource usages between
started operations. This model could be used in quick design space exploration.

vectors. The traditional resource vector-based approach for conflict detection. It main-
tains the composite vector and checks resource conflicts against the composite vec-
tor each time an operation is started.

active FSA. Uses an FSA for conflict detection. FSA is fully constructed before start-
ing the simulation. The used construction algorithm is similar to the one presented
in [17].

In this model, the automaton is fully constructed before starting the simulation.
Therefore, in case of function units with complicated pipeline resource usage pat-
terns, an “state explosion” can happen, which lengthens the simulation initializa-
tion. The simulation itself should be very fast as conflicts are detected with a single
table lookup.

lazy FSA. Like “active FSA”, but the FSA is not fully constructed before starting the
simulation. Instead, only the start state is created and other states are created when
they are visited for the first time during simulation.

Our hypothesis is that this model should improve startup time when compared to
the active FSA model, but the simulation itself might be slower due to the need of
checking whether a required state exists and building one if the transition is valid.

Models were evaluated with the following function unit resource usage patterns try-
ing to cover the wide range of function units used in processors.

ALU. Arithmetic-logic unit with 18 integer operations. Latency of each operation is
one cycle.

MUL. A single-operation function unit that implements integer multiplication with
latency of 3. The operation uses three pipeline resources (symbols R, A, and W)
as illustrated in Fig. 2.

FPU. Function unit that models a floating-point unit. Its pipeline matches the one of
MIPS R4000 floating-point unit, as described in [18]. The unit includes floating-
point operations that share eight different pipeline stages. The double precision
floating-point operations range from a simple “absolute value” operation (latency
of two) to a long latency operation “square root” (latency of 112).
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Table 1. Count of created states in the active FSA model

FU states
MUL 3
ALU 2
FPU 258

The count of states in FSA affects the initialization time for the actively initialized
FSA-based simulation model. State counts for each function unit pipeline model are
listed in Table 1.

5 Results

Table 2 lists the startup times for each of the models and Table 3 shows the simulation
times. The simulation times do not include the model initialization time, but they do
include the time to simulate the actual functionality of the operation.

The startup and simulation times are compared to the model “none” to indicate the
slowdown compared to no conflict detection at all. This “baseline” represents an ideal
model without any conflict detection overhead.

The results show that the simplest conflict detection model using resource vectors
is relatively fast to initialize (still measured a slowdown of 32 to 45 percent), but its
simulation speed is at worst about 7.6 times slower than the FSA-based approaches.
The FSA-based conflict detection slowed the simulation down about 32 to 59 percent,
compared to the model with no conflict detection, while with resource vectors, the slow-
down was more drastic, from 736 to 1065 percent. The simulation results for lazy FSA
were identical to those of active FSA.

The lazy initialization of the FSA seemed to be a profitable optimization as it reduced
the overhead of building the states during initialization from 9 to 23 percent when com-
pared to the active FSA, while still providing equal simulation speed to the active FSA.

Table 2. Simulation startup times

none vectors active FSA lazy FSA
MUL 1.00 (5.7 s) 1.32 (7.5 s) 1.72 (9.8 s) 1.56 (8.9 s)
ALU 1.00 (38.3 s) 1.45 (55.5 s) 3.24 (124.4 s) 2.66 (101.8 s)
FPU 1.00 (116.0 s) 1.35 (157.0 s) 3.27 (379.4 s) 2.51 (290.6 s)

Table 3. Simulation times

none vectors active FSA lazy FSA
MUL 1.00 (2.0 s) 10.65 (21.3 s) 1.40 (2.8 s) 1.40 (2.8 s)
ALU 1.00 (2.2 s) 7.36 (16.2 s) 1.32 (2.9 s) 1.32 (2.9 s)
FPU 1.00 (5.8 s) 9.66 (56.2 s) 1.59 (9.2 s) 1.59 (9.2 s)
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Low initialization time is important especially during a processor design space explo-
ration with smaller test programs during which frequent short simulations of evaluated
architecture variations is usual.

6 Conclusion

In this paper, simulation models for detecting function unit pipeline resource conflicts
in simulation of architectures with independent function unit pipelines were evaluated.
The evaluated models included the traditional resource vector based approach, and an
approach that uses an finite state automaton (FSA) to detect resource conflicts quickly.

Additionally, an improvement to the FSA-based approach was proposed. In this “lazy
FSA” model, the states are not constructed at simulation initialization time, but at the
time they are used the first time, thus reducing the simulation initialization time in case
of complex resource usage patterns in the simulated function unit.

The different models were implemented and benchmarked using three different test
function units with resource usage patterns of varying complexity and with operations
with both short and long latencies. The conclusion from the benchmarks is that the
proposed “lazy FSA” approach, due to its reasonable initialization time combined with
good simulation speed, is a suitable default model for function unit simulation in a
processor simulator.

In the future, we plan to evaluate more techniques for speeding up the simulation of
statically scheduled architectures with simplified control logic, like VLIWs and TTAs.
Producing a very fast simulator especially for TTAs is quite challenging as it is not a
traditional instruction set architecture, thus cannot be easily mapped to the host instruc-
tion set by means of compiled simulation. In addition, its architecture is very close to its
microarchitecture, thus, even a functional simulation is forced to model quite low level
details. However, techniques like combining speed of functional simulation with accu-
racy of cycle-level simulation or the use of techniques such as “memoization” could be
interesting to adapt for our case [10,5].
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