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Abstract—OpenCL is a programming language standard which
enables the programmer to express the application by structuring
its computation as kernels. The OpenCL compiler is given the
explicit freedom to parallelize the execution of kernel instances
at all the levels of parallelism. In comparison to the traditional C
programming language which is sequential in nature, OpenCL
enables higher utilization of parallelism naturally available in
hardware constructs while still having a feasible learning curve
for engineers familiar with the C language.

This paper describes methodology and compiler techniques
involved in applying OpenCL as an input language for a
design flow of application-specific processors. At the core of the
methodology is a whole program optimizing compiler that links
together the host and kernel codes of the input OpenCL program
and parallelizes the result on a customized statically scheduled
processor. The OpenCL vendor extension mechanism is used to
provide clean access to custom operations.

The methodology is studied with a design case to verify the
scalability of the implementation at the instruction level and to
exemplify the use of custom operations. The case shows that
the use of OpenCL allows producing scalable application-specific
processor designs and makes it possible to gradually reach
the performance of hand-tailored RTL designs by exploiting
the OpenCL extension mechanism to access custom hardware
operations of varying complexity.

Index Terms—OpenCL, Application-Specific Processors, Hard-
ware accelerators, Instruction level parallelism, VLIW, Transport
Triggered Architectures

I. INTRODUCTION

Today the trend in computation platform design is to add
more independent processor cores and processing elements to
improve throughput by means of parallel execution instead of
increasing the clock frequency and the level of pipelining of
single monolithic cores. This is due to the fact that the clock
frequencies of processor designs are reaching the limits of
the CMOS technology and microarchitecture designs [1]. In
addition, high clock frequencies might lead to heat problems
due to higher power consumption [2].

Programming such parallel processors requires program-
ming languages supporting parallelism. The C programming
language was developed in 1970s and has retained its popular-
ity ever since [3]. It has been the traditional choice especially
for embedded systems engineers due to its ”close-to-hardware“
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nature and widely available compiler support. In addition to
programming existing processors, the C language has been
widely used as an input to hardware design flows. Especially
so called hardware/software co-design toolsets often start
from application descriptions in C which are then gradually
converted, automatically or manually, to hardware accelerators
or customized processors executing the described algorithm
faster than an off-the-shelf processor would. However, as C is
a sequential programming language with unrestricted pointers
and no standardized means to describe parallel execution at the
multiple levels of parallelism, its capabilities in the generation
of hardware accelerators with adequate throughput are limited.

Experience has shown that it is very difficult, computa-
tionally expensive, and often just plain impossible to extract
parallelism from sequentially defined programs [4].

OpenCL standard [5] sidesteps this issue by structuring
computation into kernels, and specifying that there are no
dependences between kernel instances by default. The imple-
mentation is free to execute code from the different “kernel
instances” sequentially, in parallel, or in an interleaved fashion,
as long as the synchronization primitives (barriers) present in
the kernel descriptions are respected. This freedom is utilized
in our methodology by extracting instruction level parallelism
from the kernel instances to improve the utilization of the
available hardware resources in the automatically generated
statically scheduled processor architecture. In addition to the
parallel execution, an important feature of the proposed design
flow is a clean and simple way to use custom hardware
operations from the OpenCL C kernels using the OpenCL
extension API.

This paper proposes methodology using OpenCL as an
input language for designing application-specific processor
(ASP) based hardware accelerators. At the core of this work
is a compilation algorithm that allows full program offline
compilation of OpenCL applications, including both the host
program and the kernels, together to a single processor binary
that is executable on a standalone customized processor. The
use of OpenCL alleviates the exploration of design tradeoffs
between silicon area and execution performance.

The paper is organized as follows. Related work is reviewed
in Section II. Section III introduces the OpenCL standard
and its benefits when used in ASP programming. Section IV



describes the processor architecture template and the toolset
used as the framework for the automated generation of ASPs.
Section V presents the practical issues in compiling OpenCL
programs fully offline to produce scalable parallel implementa-
tions of the accelerated algorithms. Section VI presents proof-
of-concept experiments of the methodology, and finally the
paper is concluded in Section VII.

II. RELATED WORK

In general, support for OpenCL has been increasingly
started to appear from major companies such as Apple,
NVIDIA, AMD, Intel, and S3. Thus, it seems OpenCL is here
to stay and an important standard to support in the future.

Recently there has appeared a few publications on using
GPGPU programming paradigms for generating code for non-
GPU devices. The papers that have been published describe the
use of the proprietary CUDA [6] language as the input while
our work is based on the standardized OpenCL. However,
as OpenCL and CUDA are very similar we consider these
projects related to ours.

MCUDA [7] is a framework that aims to replace the sub-
optimal CUDA to x86 compilation tool of the NVIDIA SDK
with a version that parallelizes the execution on multiple host
cores. The framework creates loops out of multiple work-item
execution to retain work group barrier semantics. However,
the parallelization is considered only at the task level while in
our work focus is on instruction level parallelization issues.

FCUDA [8] is a source-to-source translator built on tech-
niques implemented in MCUDA. They use the AutoPilot tool
from AutoESL [9] for high level synthesis. Their main focus
is on task level parallelization while leaving the important
instruction level parallelism between work-items to lesser
attention. Exploiting the ILP within a single wide statically
scheduled core has its benefits as there are less off-core
synchronization and communication required because more of
the shared variables between work items can be stored in fast
general-purpose registers.

CUDA is used as a starting point for hardware accelerator
generation for FPGAs in [10]. The approach is exemplified
with a kernel used to implement the MrBayes algorithm. The
paper shows a procedure on how to map the relatively simple
kernel of this algorithm to a pipelined hardware design. The
approach differs from ours mainly in the reprogrammability.
While our approach is based on a processor template with
simplistic control logic, their approach generates directly hard-
ware constructs with schedules implemented as state machines.
This approach might lead to complex state machines when
the mapped kernel is not trivial and contains control flow. In
addition, the approach they present is not automatized while
our contribution is to present a fully operational tool flow that
targets a customizable processor architecture template, thus
enables scaling of datapath resources according to the ILP
available in the compiled OpenCL kernels.

III. OPEN COMPUTING LANGUAGE

OpenCL (Open Computing Language) [5] is a standard
for programming heterogeneous multiprocessor platforms. The

standard defines a C language API for invoking “kernels”
(functions describing parallel execution on the device) and a
C-based language called OpenCL C that is used for defining
the kernels.

Albeit the background of OpenCL is clearly in the general-
purpose computing on graphics processing units (GPGPU)
community, and it is closely resembling the proprietary CUDA
language from NVIDIA [6], the aim of OpenCL is to become
a universal language for programming platforms with hetero-
geneous processing devices such as GPUs, CPUs, DSPs, etc.

What makes OpenCL an attractive candidate to act as
an input for customized processor design flow is that it
allows explicit definition of parallel execution at multiple
levels. Operations on its vector data types invoke data level
parallelism within a single kernel instance while the kernel
instances itself implicitly describe parallel execution which
is explicitly synchronized with barriers. The host API allows
describing the number of “work-items” (instances of kernels
executed in parallel) in a number of “work-groups”, and the
compiler and the execution platform is left the freedom - and
the responsibility - to actually map the descriptions to the
underlying hardware as efficiently as possible.

For our work, the interesting aspect of OpenCL is that
it opens the possibility of design space exploration of the
execution platform’s area/performance ratio by means of al-
lowing the scaling the performance by adding or removing
computational resources according to the number of work
items to be executed in parallel.

As a language for implementing processing kernels such
as DSP filters as hardware accelerators, OpenCL C is clearly
more powerful than the traditional C. While providing the
most useful characteristics of C, the following differences and
additional features stand out:

• Implicit independence between work-items and work-
groups. As the execution is assumed to be independent,
including memory accesses not only to “private” storage
but also to shared “local” and “global” memory, it is pos-
sible to parallelize code from multiple work-items at the
different granularities of parallelism. All synchronization
is done by explicit barrier and memory fence calls.

• Support for multiple disjoint address spaces helps in alias
analysis and enables explicit access to multiple separate
memories.

• No dynamic memory allocation. The data memory con-
sumption of the kernels can be estimated at compile time.

• Vector data types. Allows defining vector computation
which can be trivially parallelized at instruction and data
levels.

• Recursion not supported. Enables aggressive procedure
call inlining.

IV. TRANSPORT TRIGGERED ARCHITECTURES

In this work, we have used transport triggered architecture
(TTA) as the processor template. TTA reminds VLIW architec-
tures [11] and the main difference between TTAs and VLIWs
can be seen in how they are programmed: instead of defining



O
U

T
PU

T

T
R

IG
G

E
R

O
U

T
PU

T

FU0 FU1
ALU Load/Store

BUS0
BUS1

BUSN

T
R

IG
G

E
R

IN
PU

T

FU2

O
U

T
PU

T

O
U

T
PU

T

O
U

T
PU

T

IN
PU

T

RF0
32x32Custom Op.

IN
PU

T

T
R

IG
G

E
R

Fig. 1. Example of a TTA processor.

which operations are started in which function units (FU) at
which instruction cycles, TTA programs are defined as data
transports between register files (RF) and FUs of the datapath.
The operations are started as side-effects of writing operand
data to the “triggering port” of the FU. Fig. 1 presents a simple
example TTA processor. The modularity of TTA enables easy
customization of processor designs, making it an interesting
architecture template for automated processor generation.

Thanks to its programmer-visible interconnection network,
TTA datapath can support more FUs with simpler RFs [12]
than an operation-programmed VLIW can. Because the
scheduling of data transports between datapath units are
programmer-defined, there is no obligation to scale the number
of RF ports according to the number of FUs [13]. In addition,
the datapath connectivity can be tailored according to the
application at hand, adding only the bypassing paths that
benefit the application the most potentially improving the
maximum clock frequency.

TTA-based Codesign Environment (TCE) [14] is a processor
design toolset that provides a complete design flow from
software written in C or C++ down to parallel TTA program
image and VHDL implementation of the processor. In this
paper we explore the benefits of OpenCL as an additional
input language alternative for TCE.

Because TTA is a statically scheduled architecture with
low level details of execution exposed to the programmer, the
runtime efficiency of the end results produced with the design
toolset depends heavily on the quality of the compiler. The
TCE complier uses the LLVM compiler infrastructure [15]
for the frontend, the global middle-end optimizations (such as
aggressive inlining and dead code elimination), and parts of
the backend (the instruction selector and the register allocator).
LLVM has been also used to implement the OpenCL trans-
formation algorithms presented later in the paper. The final
phases of TCE code generation have been written from the
scratch to provide efficient retargetable instruction scheduling
and TTA-specific optimizations.

V. COMPILING OPENCL FOR APPLICATION-SPECIFIC
PROCESSORS

The portability of OpenCL programs allows development
and verification of the application code first outside the TCE
toolset and later the code can be recompiled using the TCE
compiler to generate code for a TTA-based ASP. Thus, the pro-
posed OpenCL to ASP design methodology usually starts from

implementation and verification of the OpenCL application
using, for example, a GPU-based compilation environment and
continues using the TCE tools for co-design of the ASP that
can execute the application as efficiently as possible.

The core algorithms and concepts used in efficient compi-
lation of OpenCL kernels to instruction level parallel code are
described in Subsections V-A-V-D. Subsection V-E describes
the way we use OpenCL API to let the hardware designer to
access “custom operations” or “special function units” in the
underlying ASP design.

A. Standalone Execution of OpenCL Applications

OpenCL is a computing language that is primarily meant for
programming heterogenous multicore platforms. However, as
one of the goals of OpenCL is to enable portability across
multiple platforms, it is possible to execute full OpenCL
programs purely using a single processor. This notion leads
to two different setups for the generated ASPs:

1) Standalone. The ASP executes both the OpenCL host
and device code. In this mode, the compiler compiles
and links both the host and kernel programs together to a
single processor binary that is executable on a standalone
customized processor. No OpenCL support is required
from the (possible) host processor of the ASP. However,
the whole source code of the kernel must be available
for offline compilation unless the ASP also includes an
OpenCL C compiler, which is usually unrealistic.

2) Host/device. The ASP executes only the kernels im-
plemented with OpenCL C and is commanded by a
host processor. This is the standard CPU/GPU setup
and requires OpenCL runtime and platform APIs to be
implemented in the host. Supports also kernel code ma-
nipulation in runtime as the kernels can be recompiled
on the host.

In our experiments, we used the standalone setup to produce
standalone ASPs. Thus, in the terms of the OpenCL platform
model, the generated ASPs act as the host, the compute device,
and the compute unit at the same time. Function units of
the TTA can be considered to be processing elements. In the
terms of OpenCL memory model, the global memory and the
constant memory can be mapped to either the ASP’s internal
local memory or a possible shared memory between the master
processor and the ASP(s), while local and private memories
map to the ASP’s fast local memory and general-purpose
registers.

Whereas OpenCL standard is designed with Single Instruc-
tion Multiple Data (SIMD) or Single Program Multiple Data
(SPMD) execution of work-items in mind, our goal was to
exploit the instruction scheduling freedom of TTA as much
as possible, thus resorting to highly predicated instruction
level parallel execution of code from multiple work-items.
Thanks to the support of overcommitting resources by means
of predicate aware scheduling [16] in TTA it is possible to
schedule execution of two operations to the same function unit
at the same time instance in case the operations are guarded
with opposite predicates. This leads to improved throughput



when compared to SIMD/SPMD style of execution. In SPMD,
diverging control flow in the executed work-items usually
results in function unit idle time because the branches are
executed sequentially.

B. Chaining Work-Items

OpenCL C data parallel execution is described like stream
processing: computation on a piece of input data. As the
work-items are completely independent from each other, it is
straightforward to chain code from multiple work-items by
just appending multiple instances of kernel code after each
other and allowing the instruction scheduler to parallelize
the code between the work-items. The analogy to C-based
compilation is to schedule multiple independent iterations of
a loop in parallel using loop unrolling or software pipelining.
However, an important benefit with OpenCL C kernels is
that the basic assumption is that the “loop iterations” (work-
items) are independent from each other, in contrast to C
loops where complex data dependence analysis is required
to prove independence. Figure 2(a) shows a simple OpenCL
C kernel structure with a single basic block (a sequence of
instructions without branches which is always executed in its
entirety). Its original control flow graph (CFG [17]) is shown
in Fig. 2(b) and the CFG after work-item chaining and joining
to a single basic block in Fig. 2(c). The final form of the
code shows that the processor can execute instructions from
two work-items in parallel if there are free datapath resources.
Another benefit from the chaining is the ability to potentially
hide operation latencies due to long latency operations like
divisions or memory loads of one work-item with instructions
from the another.

k e r n e l void
some ke rne l ( . . . . ) {

BB1 ;
}

(a)

<entry>

BB1

<exit>

(b)

<entry>

BB1+BB1’

<exit>

(c)

Fig. 2. Simple example on work-item chaining: (a) OpenCL C kernel source,
(b) original kernel CFG, and (c) a CFG with two work-items chained and
joined.

Some complexity to work-item chaining is introduced by
the work-group barriers. In the presence of barriers, all work-
items in the same work-group are expected to synchronize
their execution at the barrier call sites. That is, whenever

a single work-item reaches a barrier, it cannot proceed its
execution until the rest of the work-items in the work-group
have reached it. Thus, in case the work-items are to be chained
statically, the kernel has to be split at barrier points and the
chaining has to be done with the split parts.

The example in Fig. 3 shows the chaining of two work-
items in case of a simple kernel with a barrier call in the
middle. In this case chaining is still relatively straightforward:
just duplicate and chain the basic blocks before the barrier
and connect the last basic block in the copied chain to the
“barrier pseudo basic block” (which is just an instruction
scheduling barrier in our case) and similarly duplicate and
chain the basic blocks after the barrier. In this example, the
code before the barrier includes a simple if-else structure. In
such case, each control flow structure needs to be duplicated as
a whole for each work-item due to the single program counter
execution. A succeeding if-conversion [18] pass attempts to
convert these control structures to single instruction level
parallelizable predicated basic blocks. However, the code after
the barrier is a single basic block without branching, thus the
chaining algorithm can join the basic blocks of the two work-
items to a single one.

When there are barriers inside a conditional basic block or
a loop body, the work-item chaining becomes more complex
as the problematic nature of static compilation of independent
execution using a single program counter becomes more appar-
ent. According to the OpenCL standard, in case of a loop with
barriers, each iteration of the loop is synchronized separately.
Thus, when a single work-item reaches the barrier in an
iteration, it waits for the rest of the work-items to complete the
code before the barrier at that iteration. Conversely, when there
is a barrier inside a loop, it can be assumed that all work-items
execute the loop the same number of times, otherwise the end
result is undefined (the barrier causes a subset of work-items
to lock up indefinitely). The work-item chaining in this case
can be done by treating the loop body independently from the
loop construct as is done in [7]. The loop construct is retained
as in the original kernel to not break the semantics and the
number of iterations in the loop, but the code before and after
the potential barriers is duplicated for each work-item.

C. Work-item Chaining Algorithm

The algorithm for statically generating code for every work-
item (effectively replicating the kernel code the required
number of times) is implemented as a set of closely related
LLVM optimization passes. The high-level structure of the
whole replication process is shown in Fig. 4.

The first step for the algorithm is to find the barriers,
i.e., calls to OpenCL C barrier() API function, present in
the kernel code. As the barriers do not need to be in the
main kernel function code, but might have been placed by
the programmer in some of the kernel called sub functions, a
prior “flattening” is required. This process performs aggressive
function inlining for all non-kernel functions, thus ensuring
kernels themselves have no calls once flattened. Apart from
easing the barrier detection, flattening also improves the results



k e r n e l void
some ke rne l ( . . . . ) {

i f (BB1) {
BB2 ;

}
b a r r i e r ( ) ;
BB3 ;

}
(a)

<entry>

BB1

<exit>

<barrier>

BB3

F BB2

T

(b)

<entry>

BB1

<exit>

<barrier>

BB3+BB3’

BB2

T

BB1’

F

F BB2’

T

(c)

<entry>

BB1+?BB2+BB1’+?BB2’

<exit>

<barrier>

BB3+BB3’

(d)

Fig. 3. Work-item chaining with barriers: (a) OpenCL C kernel source,
(b) initial kernel CFG, (c) two work-items chained, and (d) the CFG after
branching eliminated with if-conversion.

LLVMOPENCL(module)
1 for each Function f ∈ module
2 do if IsKernel(f)
3 then FLATTEN(f)
4 DETECTBARRIERS(f)
5 for each Region r ∈ f
6 do LOOPREGION(r)
7 REPLICATECODE(r)
8 return module

Fig. 4. Work-item code replication algorithm.

of latter language-independent optimization passes such as
loop-unrolling or dead code elimination.

Each of the regions between barrier calls are then processed
independently. In order to follow the OpenCL programming
model, the regions need to be executed a number of times
equal to the work-group size. This can be achieved by two
different ways: creating loops or replicating the code for each

work-item. The former has the advantage of keeping the code
size small, but results less ILP to be exploited, while the
latter creates more ILP but can lead to huge programs needing
lots of resources and processing time to schedule. In order
to parametrize this tradeoff, our algorithm uses a runtime
parameter to determine the maximum number of replications
to be performed per region, thus the number of work items
potentially executed in parallel, and generates the remaining
work-item executions using loops.

The region replication algorithm works like the basic loop
unrolling that is modified to mark instructions belonging to
different work-items with an unique annotation to help alias
analyzer in recognizing independent instructions. Each basic
block is replicated, maintaining the intra-region control flow
structure, and an unconditional branch is then added at the end
of the previously existing region to ensure the replicated code
is run after the original. This process is repeated as many times
as required according to the number of parallel work-items to
be created.

The region chaining algorithm is designed to generate
valid and easy-to-debug code, but it does not perform any
optimization. As such, it creates several basic blocks connected
by unconditional branches, which can be combined into a
single larger basic block. After the region replication has been
performed for each kernel, the whole code is linked with the
host program and a global optimization stage takes place to
reduce this unoptimized code to a smaller and more efficient
form.

D. Efficient Instruction Scheduling of Work-Items

The processors generated with our design flow are statically
scheduled VLIW-style architectures with up to hundreds of
programmer visible general-purpose registers. In order to not
hinder the post-pass instruction scheduler from exploiting
the potential parallelism between work-items due to “false
dependencies” introduced by the reuse of registers, we im-
plemented a customized register allocator. The goal for the
register allocator is to assign different registers for the chained
work-items to allow them to be fully parallelized.

The register allocator implementation is based on the LLVM
version of the Linear Scan Register Allocator [19] by adding a
round-robin style bookkeeping for the indices of the registers
allocated to variables. This way variables get assigned new
registers whenever possible. This simple modification caused
the instructions from different work items to usually have
registers allocated from different register sets, resulting in a
reduced number of register antidependencies. However, this
allocation strategy is not even close to optimal due to its
greediness that results in more spill code than necessary.
Work is ongoing to improve the register allocator to minimize
harmful false dependencies while still preserving conservative
register usage.

The another source for data dependencies in programs lead-
ing to unnecessary sequentialization are the memory accesses.
In case the program contains stores, it is not legal to schedule
a succeeding load before or parallel with the store unless it can



be proven that the store and the load never access the same
memory address. The problem of figuring out whether the
same memory location is accessed by two different memory
instructions is called “alias analysis”.

When scheduling instructions from multiple work-items
of OpenCL C kernels in parallel there are several useful
properties to assist the alias analysis:

1) All pointer arguments to the kernel function can be
assumed to not alias with each other within the work-
item. Thus, the pointers can be marked as “restricted
pointers” (introduced by ISO C99 [20]) allowing re-
ordering memory accesses to the different input and
output buffers within a single work-item.

2) Accesses to the different address spaces cannot alias.
That is, even in case the global and local memories
were mapped to the same physical address space, the
instruction scheduler can treat them as disjoint areas and
reorder the accesses.

3) Accesses through pointers to the constant memory can
be assumed to be only reads. Thus, no overlapping
with non-const pointers can happen. Furthermore, as
the constant memory is known to be truly read-only
(contrary to the const pointers in C/C++, for example,
which can point to memory that is modified by non-
const pointers) no write can alias with constant memory
reads.

4) Most importantly: in the regions between work group
barriers, the memory accesses of different work-items
can be considered not to alias. This allows treating
the chained work-items as fully independent regions of
code.

The alias analyzer of our instruction scheduler takes advan-
tage of these special properties of OpenCL C to minimize the
data dependencies in the work-item chained code, resulting in
more scheduling freedom.

E. Custom Operation Support

The use of custom operations, also known as special instruc-
tions or special function units (SFUs), is often the most impor-
tant way to accelerate the execution of an application running
in an application-specific processor. The capability to support
custom operations without restrictions to their complexity
enables gradual optimization of the architecture by adding
more and more target-specific custom operations until the
performance is close or equal to an accelerator implemented
purely as a non-programmable hardware block. Therefore, it is
crucial to provide seamless support for programmers to access
custom operations from the source code level.

The OpenCL standard defines an API to provide support
for vendor specific extensions (see [5], Chapter 9). This API
is used in our framework as a means to access the custom
operations available in the target processor. The standard
requires the OpenCL compiler implementation to generate
specifically named preprocessor macros when an extension is
supported. In our toolset, the required headers and macros to
produce the inline assembly that triggers the custom operations

#ifdef cl_TCE_ADDSUB
clADDSUBTCE(a, b, c, d);

#else
c = a + b;
d = a - b;

#endif

Fig. 5. Example of using a custom operation inside an OpenCL kernel in a
portable way.

are generated automatically from an architecture description
file. Thus, it is possible to compile the same OpenCL C
kernel code both to a target that supports and does not support
the custom operation in question by using the preprocessor
to select the accelerated custom operation or the software-
only version. One important benefit from this is that the
custom operation accelerated program can be still compiled
with a regular GPGPU tool chain like that of NVIDIA’s
without modifications in case a software version of the custom
operation is provided.

An example code snippet that uses a 2-input-2-output cus-
tom operation ADDSUB, which adds and subtracts its operands
in parallel is shown in Fig.. 5. The #else branch executes the
same operation in software to maintain portability.

VI. EXPERIMENTS

In order to validate and measure the performance and
feasibility of the use of OpenCL for ASP design in practice,
we implemented an Advanced Encryption Standard (AES)
encoder using the design flow.

AES uses a data block of 128 bits and a key size of 128,
192 or 256 bits. For our experiment we chose 128-bit key size.
The operations involved in the algorithm are substitutions,
rotations and permutations, using the 128 bits of data as a
4x4 array of bytes. Many software implementations of the
algorithm manage the data to be processed as a buffer of chars,
and all the operations are done in char size. For minimizing
the number of memory accesses we used a variation of the
Gladman’s implementation [21] that packs each 4 bytes of data
in 32 bits unsigned values and uses other similar optimizations
in some steps of the algorithm for reducing memory read and
write operations.

The algorithm is divided into two steps: key expansion and
encryption/decryption. The key expansion takes a 128-bit key
and generates a 1408-bit expanded key. This step has to be
done only once if the key doesn’t change, therefore in our
OpenCL implementation we implemented this functionality in
the main program.

The encrypt and decrypt steps are done for each block of
128 bits on the source data. These functions were imple-
mented as OpenCL kernels. The encryption kernel receives
several parameters from the host side: the global buffer to be
encrypted, the expanded key, the buffer to store the results,
and the substitution tables needed by the algorithm. Using
these parameters and its own global identifier each work-item



Fig. 6. The OpenCL AES encryption implementation.

Parallel WIs cycles speedup
1 35,729 1.00
2 18,209 1.96
4 9,505 3.76

TABLE I
EFFECT OF THE PARALLEL WORK ITEM COUNT TO THE CYCLE COUNT.

executing the kernel calculates the piece of input data it must
process.

The host program is responsible for copying the data, key,
and substitution tables to the device global memory. Once data
is on device memory, the host launches as many work-items as
there are 128-bit blocks in the input data buffer that must be
encrypted or decrypted, and finally when all the work-items
have finished it reads back the results (see Fig. 6).

A. Instruction-level Parallelism

The first experiment was conducted to verify the instruction
level parallelism scalability of the OpenCL implementation.
In order to measure this, we designed an architecture that
provided enough resources for the program to be limited
only by its data dependencies. The OpenCL application was
compiled for this architecture with one, two and four parallel
work items.

The benchmark program encrypted 4KB of random data.
The cycle counts with different number of parallel work items
are shown in Table. I. The numbers show that the compiler
optimizations described in the paper are able to take advantage
of the explicit parallelism in the OpenCL kernels, and, given
enough resources in the target machine, parallelizing the work
items perfectly producing approximately linear speedup with
relation to the number of parallel work items.

B. Custom Operations

In the second experiment, we evaluated the use of custom
hardware operations to accelerate the application using the
OpenCL C extension API as proposed in Section V-E. For
this experiment, we designed a realistic base architecture
named AESTTA with datapath resources as shown in Table II.
The connectivity between the datapath units was clustered

resource multiplicity notes
Arithmetic-logic unit 3 1 cycle latency
Register file 3 16 registers per file
Load/Store unit 1 2 cycle load latency
32-bit multiplier unit 1 3 cycle latency

TABLE II
RESOURCES IN THE AESTTA PROCESSOR.

architecture cycles speedup KB/s at 100 MHz
AESTTA 1,119,415 366
AESTTA+MUL GAL 450,490 2.5 909
AESTTA+MUL GAL+SS 286,778 3.9 1,428

TABLE III
SPEEDUPS FROM CUSTOM OPERATIONS.

VLIW-like with FUs and RFs divided to three one-FU-one-RF
clusters. The three clusters were interconnected with a fully
connected transport bus.

In order to verify that the architecture is implementable
without long critical paths ruining the performance due to
low clock frequency, the architecture was synthesized on
two FPGA chips: Xilinx Virtex 5 and Altera Stratix II. The
maximum clock frequencies were 191MHz for Virtex 5 and
149MHz for Stratix II.

Two custom operations were designed and added to the base
architecture:

• MUL GAL, a multiplication of two integers in the Galois
field GF(28). The software implementation needs two
reads from a logarithm table, a read from an antilogarithm
table, an addition, and some control for performing this
multiplication. In hardware, it can be done in a single
clock cycle using two ROMs for the tables, and an 8-bit
adder.

• SUBSHIFT involves searching in a look-up table, sub-
stituting and mixing some elements of an 4 × 4 array.
In software, it takes several clock cycles for reading the
look-up table and mixing the elements of the array, but
in hardware this operation can be done in a single clock
cycle using a ROM and multiplexers.

The same encoding benchmark with the random 4KB input
data set as in the previous experiment was compiled with two
parallel work items and simulated with the architecture simu-
lator to produce the cycle counts for the kernel execution. The
speedups from using the two custom operations in comparison
to the software-only AESTTA are shown in Table III. For
curiosity, in addition to the cycle count speedups, the table
includes the calculated encoding throughput with 100 MHz
clock frequency.

The results show that adding custom operations using
the extension mechanism works and provides remarkable
speedups as expected. Adding both custom operations to the
machine produces almost 4x speedup in comparison to the
software-only version. By inspecting the generated code, the
speedup is partially due to reduced general purpose register



pressure which results in less spills and less antidependencies
that constrain the parallelism.

In this case, it would be possible to further accelerate the
design with little effort, for example, by adding a fourth
cluster to the base machine, increasing the number of general
purpose registers, or by adding more custom operations to the
design. It can be seen from the previous experiment that given
enough resources, the cycle count can be reduced considerably.
However, the purpose of this experiment was not to design
the fastest possible AES hardware implementation, but to
provide a proof-of-concept for the proposed OpenCL-based
ASP design methodology.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes a design methodology that uses the
OpenCL standard in application-specific processor (ASP) de-
sign. The leading idea in this work is to exploit the ability
of OpenCL to describe parallelism at its multiple granularities
and exploit the instruction level parallelism of the ASP as
much as possible while providing a clean access to custom
operations.

In our experiments, we verified that the parallel application
description capabilities of OpenCL make it possible to scale
the single core performance of the ASP design efficiently by
increasing the number of parallel work-items and datapath
resources. The custom operation support was verified by using
two non-trivial custom operations to accelerate the AES ASP
design.

The next steps in our work is to extend and implement the
static work-item chaining algorithm to cover more OpenCL
kernels with more complex barrier usage scenarios and to im-
prove the efficiency of the instruction scheduler on machines
with small number of registers and reduced connectivity. In
addition, we plan to add support for generating multicore ASPs
to exploit task level parallelism.
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