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Outline

« TCE design flow overview

« TCE design flow tutorial

 TCE Tour:
From C code to an Application Specific Processor
RTL

* Summary
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Application

» Tutorial application is CRC-32
« Cyclic Redundancy Check

» Application will be analyzed and accelerated
* We will create ASIP RTL from the application

« Cto VHDL

* Download tutorial files from
http://tce.cs.tut.fi/tutorial files/tce tutorials.tar.qz

« Unpack with: tar -xzf tce_tutorials.tar.gz



http://tce.cs.tut.fi/tutorial_files/tce_tutorials.tar.gz
http://tce.cs.tut.fi/tutorial_files/tce_tutorials.tar.gz
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Compile the application

- Copy the starting point architecture to tutorial folder:
cp /usr/local/share/tce/data/mach/minimal.adf start.adf

« Open the architecture in Processor Designer tool:

 prode start.adf
« Adjust address spaces

- Compile the source code for starting point architecture
- tcecc -O3 -a start.adf -o crc.tpef -k result main.c crc.c
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Simulate using Proxim GUI

 Start proxim:
e proxim start.adf crc.tpef &

» Execution can be followed from machine
window:
» Select View -> Machine Window
 Try stepping the execution

* Click Run or Resume to finish execution



Proxim cont.

 Result can be checked from the result variable

* X/uw _result
e Correct result is 0x62488e82

» Cycle count is at bottom right
« Command “info proc cycles” also shows them
« Write down the cycle count for comparison

* Resource usage statistics can be seen
* Info proc stats
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Analyze the application

- Open file crc.c Iin a text editor

- crcFast function calls reflect function using
REFLECT_DATA macro

- Then performs bitwise xor-operation

- Reflect Is also called at the end of the function
with REFLECT REMAINDER macro

- Reflect function reflects the input bit pattern

 lterative on software

- Can be done concurrently on hardware
- (Good custom operation candidate



Reflect operation: SW vs. HW

On software: On hardware:
INPUT DATA
for (bit=0; bit<nBits; bit++){ 7 6 5 4 3 2 1 o0
If (data & 0x01) {
reflection I=

(1 << ((nBits-1) — bit));

}
data = (data >> 1);

}

Registers

OUTPUT DATA
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Further analyzation

- Reflect is performed for 8-bit and 32-bit data

- Can be done on same hardware
- 32-bit crosswiring

- Need to add multiplexers before registers for 8-bit
reflections

« Not much logic needed
- Can be done in one clock cycle
- -> operation latency is 1 cycle
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Add custom operation definitions

« Operation definition tells the semantics of the operation to
compiler

* Open operation set editor
* 0sed &
* Add new module
 Right click /nome/tce/.tce/opset -> Add module
* Name it as “tutorial”
« Add operation
* Name the operation REFLECTS8
* Add 1 UintWord input port
* Add 1 UintWord output port
* Click OK
* Repeat for operation REFLECT32 {_}
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Add custom operation simulation

model
- C++ simulation model is needed to simulate the
operation

- We can use the original reflect function as the
simulation model.

- It needs some small changes
« Right click REFLECTS8 and select Modify Behavior

- Copy-paste the operation behavior from the user
manual or from file custom_operation_behavior.cc

- Save the file

- Compile the behavior by right clicking “tutorial” and
select build
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Add SFU to architecture

* We need to add a Function Unit that supports the custom
operations into our architecture

» First copy the current architecture
 cp start.adf custom.adf
* Open the copy in ProDe
* prode custom.adf &
« Select Edit -> Add -> Function Unit...
« Name the function unit as REFLECTER (capital letters!)
« Add port:
* name it inputl
« check the “Triggers” box
« Add another port
* name it outputl
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Add SFU cont.

Add operations by clicking Add from opset...
- Select REFLECTS
- Check that latency is 1
- Repeat for operation REFLECT32
« Close the dialog with OK
- Connect the function unit
- Select Tools -> Fully Connect IC
- Save the architecture

- Now the processor architecture supports REFLECTS8
and REFLECT32 operations
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Add custom operation calls

Copy crc.c
e cp crc.c crc_with_custom_op.c
« Open crc_with_custom_op.c in text editor
« Add #include “tceops.h” to the top
» Locate crcFast function
« Add 2 new variables to the beginning of crcFast function
crc input =0
crc output =0
» Modify the for-loop:
Input = messagel[byte];
_TCE_REFLECTS(input, output);
data = output * (remainder >> (WIDTH - 8));
remainder = crcTable[data] * (remainder << 8);
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Add custom operation calls cont.

* Modify the return value

* Replace line

return (REFLECT_REMAINDER(remainder) ~
FINAL_XOR_VALUE);

« With lines:
_TCE_REFLECT32(remainder, output);
return (output * FINAL_XOR_VALUE);

* Now the code uses reflect custom operations
iInstead of the original reflect-function
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Compile and simulate with custom
operation

* Compile the new code

tcecc -O3 -a custom.adf -0 crc_with_custom_op.tpef -k
result main.c crc_with_custom_op.c

* This time we will use the command line
simulator ttasim and produce bus trace for
RTL verification

* Launch ttasim:
* ftasim

* Enable bus trace setting:
e setting bus trace 1



Simulate cont.

« Load architecture and program and execute program
* mach custom.adf
e prog crc_with_custom_op.tpef
° run
 Verify result (should be 0x62488e82)
* X/uw _result
« Check cycle count
* Info proc cycles
« WOW!

« Simulator produced the bus trace In file
crc_with_custom_op.tpef.bustrace
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Add SFU implementation to HDB

* |n order to create processor VHDL we need
to add HW implementation for the new
Special Function Unit

* Implementation is in file tour_vhdl/reflect.vhdl
* Open it in text editor

* Next step is add the implementation to
Hardware Database (HDB)
* Map HW ports to architecture ports in HDB
* Add generic values to HDB
* Add HW implementation files to HDB



Add SFU cont.

* To speed up things we’'ll use the given
tour_example.hdb

* Open hardware database editor to take a
look at the hdb:

* hdbeditor tour_example.hdb &
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Generate processor RTL
implementation

* Open the architecture in ProDe
* prode custom.adf &
* select Tools -> Processor Implementation

* Next step Is to select implementations for the
function units

» But we will skip this and use the given
Implementation description file

* Click Load IDF... and select file
custom_operations.idf



Generate processor cont

* In Binary Encoding Map dialog
» Select Generate new
 Target directory dialog
 Click Browse...
» Create new folder: proge-output
» Select it
* Click OK to generate processor

* Processor RTL implementation is now In
folder proge-output
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Generate program binary images

* Now we need the program images for
the processor
* generatebits -d -w 4 -p crc_with_custom_op.tpef
-X proge-output custom.adf
« Command creates

* Instruction memory image crc_with_custom_op.img
- Data memory image crc_with_custom_op data.img



VHDL simulation

* Go to proge-output folder
* Cp proge-output
« Copy images for the testbench

* cp ../crc_with_custom_op.img tb/imem_init.img
e cp ../crc_with_custom_op_data.img tb/dmem_init.img

« Compile testbench
 ./ghdl_compile.sh

 Simulate testbench

 ./ghdl_simulate.sh
e This will take some time
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Verification

» We can compare the bus traces to verify RTL
simulation

 Cut RTL simulation bus trace to match the
ttasim bus trace
* head -n (cycle count) bus.dump > sim.dump

« Compare bus traces

 diff -u sim.dump ../crc_with_custom_op.tpef.bustrace
* |If there Is no output traces were equal
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Summary

TTA Is a customizable processor architecture
template

We have covered the basics of the TCE design flow

* You now know how to
« Modify a processor architecture
« Create and add custom operations

* Create RTL implementation of the processor and binary
Images of the program

« Verify the implementation
Simple custom operation increased the performance
significantly
Performance can be also increased by adding more
resources to the processor
* You can try it on your own $ TAMPERE UNIVERSITY OF TECHNOLOGY

Department of Computer Systems




