TTA-Based Co-design
Environment (TCE)
Tutorial

v.l.1
authors: Otto Esko
Pekka Jaaskeldinen

This work is licensed under the Creative Commons Attribution 3.0 Unported License:
http://creativecommons.org/licenses/by/3.0/ $ CAMPERE UNIVERSITY OF TECHNOLOGY

Department of Computer Systems

Outline

« TCE design flow overview

« TCE design flow tutorial

 TCE Tour:
From C code to an Application Specific Processor
RTL

* Summary

TCE ASIP Design Flow

Designer £
HLL (or automated
(C, C++, OpenCL) “explorer”) £
TCE Design Tools S Proceszor)
‘ Designer ‘
| Tool |
" Retargetable
| Compiler |
" Retargetable ———
‘ Instruction Feedback
Simulator |
\ -
Hardware —\L— el it
Processor yele cou
Datahast_: H Generator | Resource constraints
(FPGA specific) 4 Profile data
T Memory usage
"Prngram Image i
|_ Generator L
I 7 — Optional instruction
Memaory
Platform - ™) i
Description H ﬂ:ﬁ:;tr:, | compression
(FPGA specific) \ g
3rd party tools r FPGA b
‘ Synthesis | = Feedback
| Tools |
f P
FPG.F. FPGA resource usage
Programming files Max frequency

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

TCE Custom Operation Flow

. [Analyze EF——

| Create |
Custom Operation
Compiler
Definition and
Simulation C
model

. y

‘. Add Custom ‘ | Processor |

Operation h
calls Designer

HLL Architecture

{C, C++, OpenCL) 1 Specification
" Retargetable |
E. Compiler |

" Retargetable |

Instruction Set
Simulator

AN

Profile data
Resource constraints

Bte. - Feedback

Operation RTL 4 Create

F

implementation is not __ | Custom Operation
needed urtil the processor | RTL Implementation
HOL wvill be createc '

:

| TTAunit |
|\L-. tester |
Yerifies that operation RTL
implementation ancd

simulation model are egual

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Application

» Tutorial application is CRC-32
« Cyclic Redundancy Check

» Application will be analyzed and accelerated
* We will create ASIP RTL from the application

« Cto VHDL

* Download tutorial files from
http://tce.cs.tut.fi/tutorial files/tce tutorials.tar.qz

« Unpack with: tar -xzf tce_tutorials.tar.gz

http://tce.cs.tut.fi/tutorial_files/tce_tutorials.tar.gz
http://tce.cs.tut.fi/tutorial_files/tce_tutorials.tar.gz

TCE ASIP Design Flow

Designer £
HLL (or automated
(C, C++, OpenCL) “explorer”) £
TCE Design Tools " Processor |
‘ Designer ‘
| Tool |
" Retargetable
| Compiler
" Retargetable ———
‘ Instruction | Feedback
| Simulator | y
Hardware —\L— Cyel nt
Processor LAl 5
Database H Generator | Resource constraints
(FPGA specific) 4 Profile data
Memory usage
"Prngram Image i
|_ Generator L
I 7 — Optional instruction
MEMory
Platform i ™) i
e ition H ﬂ:ﬂ:;tr:, | COmpression
(FPGA specific) \ g
3rel party tools - FPGA b
‘ Synthesis | ~ Feedback
| Tools |
.f,a ra

FPGA
Programming files

FPGA resource usage
Max frequency

£

TAMPERE UNIVERSITY OF TECHNOLOGY

Department of Computer Systems

Compile the application

- Copy the starting point architecture to tutorial folder:
cp /usr/local/share/tce/data/mach/minimal.adf start.adf

« Open the architecture in Processor Designer tool:

 prode start.adf
« Adjust address spaces

- Compile the source code for starting point architecture
- tcecc -O3 -a start.adf -o crc.tpef -k result main.c crc.c

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

TCE ASIP Design Flow

Designer £
HLL (or automated
(C, C++, OpenCL) “explorer”) £
TCE Design Tools S Proceszor)
‘ Designer ‘
| Tool |
" Retargetable N
| Compiler |
" Retargetable ———
‘ Instruction Feedback
Simulator
L -
Hardware - ™) Cyel it
Processor LAl 5
Datahast_: H Generator | Resource constraints
(FPGA specific) 4 Profile data
Memory usage
"Prngram Image i
|_ Generator L
I 7 — Optional instruction
Memaory
Platform - ™) i
Description H |,|::ﬂ:;{:, | compression
(FPGA specific) \ g
3rd party tools r FPGA b
‘ Synthesis | = Feedback
| Tools |
f P
FPG.F. FPGA resource usage
Programming files Max frequency

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Simulate using Proxim GUI

 Start proxim:
e proxim start.adf crc.tpef &

» Execution can be followed from machine
window:
» Select View -> Machine Window
 Try stepping the execution

* Click Run or Resume to finish execution

Proxim cont.

 Result can be checked from the result variable

* X/uw _result
e Correct result is 0x62488e82

» Cycle count is at bottom right
« Command “info proc cycles” also shows them
« Write down the cycle count for comparison

* Resource usage statistics can be seen
* Info proc stats

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

TCE Custom Operation Flow

Create
Custom Operation
Compiler
Definition and
Simulation C
model

T — N A

‘. Add Custom ‘ | Processor |

Operation h
calls Designer

HLL Architecture

{C, C++, OpenCL) 1 Specification
" Retargetable |
E. Compiler |

" Retargetable |

Instruction Set
Simulator

AN

Profile data
Resource constraints

Bte. - Feedback

Operation RTL 4 Create

F

implementation is not __ | Custom Operation
needed until the processor | RTL Implementation
HOL wvill be createc '

:

| TTAunit |
|\L-. tester |
Yerifies that operation RTL
implementation ancd

simulation model are egual

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Analyze the application

- Open file crc.c Iin a text editor

- crcFast function calls reflect function using
REFLECT_DATA macro

- Then performs bitwise xor-operation

- Reflect Is also called at the end of the function
with REFLECT REMAINDER macro

- Reflect function reflects the input bit pattern

 lterative on software

- Can be done concurrently on hardware
- (Good custom operation candidate

Reflect operation: SW vs. HW

On software: On hardware:
INPUT DATA
for (bit=0; bit<nBits; bit++){ 7 6 5 4 3 2 1 o0
If (data & 0x01) {
reflection I=

(1 << ((nBits-1) — bit));

}
data = (data >> 1);

}

Registers

OUTPUT DATA

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Further analyzation

- Reflect is performed for 8-bit and 32-bit data

- Can be done on same hardware
- 32-bit crosswiring

- Need to add multiplexers before registers for 8-bit
reflections

« Not much logic needed
- Can be done in one clock cycle
- -> operation latency is 1 cycle

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

TCE Custom Operation Flow

Create
Custom Operation
Compiler
Definition and
Simulation C
model

‘. nld]:;:r:zt:r:" ‘ | Processor |
| calls . L Designer
HLL Architecture

{C, C++, OpenCL) 1 Specification
" Retargetable |
E. Compiler |

" Retargetable |

Instruction Set
Simulator

AN

Profile data
Resource constraints

Bte. - Feedback

Operation RTL 4 Create

F

implementation is not __ | Custom Operation
needed until the processor | RTL Implementation
HOL wvill be createc '

:

| TTAunit |
|\L-. tester |
Yerifies that operation RTL
implementation ancd

simulation model are egual

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Add custom operation definitions

« Operation definition tells the semantics of the operation to
compiler

* Open operation set editor
* 0sed &
* Add new module
 Right click /nome/tce/.tce/opset -> Add module
* Name it as “tutorial”
« Add operation
* Name the operation REFLECTS8
* Add 1 UintWord input port
* Add 1 UintWord output port
* Click OK
* Repeat for operation REFLECT32 {_}

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Add custom operation simulation

model
- C++ simulation model is needed to simulate the
operation

- We can use the original reflect function as the
simulation model.

- It needs some small changes
« Right click REFLECTS8 and select Modify Behavior

- Copy-paste the operation behavior from the user
manual or from file custom_operation_behavior.cc

- Save the file

- Compile the behavior by right clicking “tutorial” and
select build

TCE Custom Operation Flow

. [Analyze EF——

Create
Custom Operation
Compiler
Definition and
Simulation C

model

‘. ng:;l;z.t:':" ‘ | Processor >
| calls . L Designer
HLL Architecture

{C, C++, OpenCL) 1 Specification
" Retargetable |
E. Compiler |

" Retargetable |

Instruction Set
Simulator

AN

Profile data
Resource constraints

Bte. - Feedback

Operation RTL 4 Create

F

implementation is not __ | Custom Operation
needed until the processor | RTL Implementation
HOL wvill be createc '

:

| TTAunit |
|\L-. tester |
Yerifies that operation RTL
implementation ancd

simulation model are egual

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Add SFU to architecture

* We need to add a Function Unit that supports the custom
operations into our architecture

» First copy the current architecture
 cp start.adf custom.adf
* Open the copy in ProDe
* prode custom.adf &
« Select Edit -> Add -> Function Unit...
« Name the function unit as REFLECTER (capital letters!)
« Add port:
* name it inputl
« check the “Triggers” box
« Add another port
* name it outputl

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Add SFU cont.

Add operations by clicking Add from opset...
- Select REFLECTS
- Check that latency is 1
- Repeat for operation REFLECT32
« Close the dialog with OK
- Connect the function unit
- Select Tools -> Fully Connect IC
- Save the architecture

- Now the processor architecture supports REFLECTS8
and REFLECT32 operations

TCE Custom Operation Flow

. [Analyze EF——

Create
Custom Operation
Compiler
Definition and
Simulation C

model

‘- ng:;l;?-:':" ‘ | Processor |
calls . L Designer
HLL Architecture

{C, C++, OpenCL) 1 Specification
" Retargetable |
E. Compiler |

" Retargetable |

Instruction Set
Simulator

AN

Profile data
Resource constraints

Bte. - Feedback

Operation RTL 4 Create

F

implementation is not __ | Custom Operation
needed until the processor | RTL Implementation
HOL wvill be createc '

:

| TTAunit |
|\L-. tester |
Yerifies that operation RTL
implementation ancd

simulation model are egual

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Add custom operation calls

Copy crc.c
e cp crc.c crc_with_custom_op.c
« Open crc_with_custom_op.c in text editor
« Add #include “tceops.h” to the top
» Locate crcFast function
« Add 2 new variables to the beginning of crcFast function
crc input =0
crc output =0
» Modify the for-loop:
Input = messagel[byte];
_TCE_REFLECTS(input, output);
data = output * (remainder >> (WIDTH - 8));
remainder = crcTable[data] * (remainder << 8);

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Add custom operation calls cont.

* Modify the return value

* Replace line

return (REFLECT_REMAINDER(remainder) ~
FINAL_XOR_VALUE);

« With lines:
_TCE_REFLECT32(remainder, output);
return (output * FINAL_XOR_VALUE);

* Now the code uses reflect custom operations
iInstead of the original reflect-function

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

TCE Custom Operation Flow

. [Analyze EF——

| Create |
Custom Operation
Compiler
Definition and
Simulation C
model

. y

‘. Add Custom ‘ | Processor |

Operation h
calls Designer

HLL Architecture
{C, C++, OpenCL - Specification

W N
Retargetable
. Compiler |
" Retargetable

Instruction Set
Simulator

AN

Profile data
Resource constraints
etc.

Feedback

AN

Operation RTL 4 Create

implementation is not Custom Operation

needed urtil the processor B __“TL Implementation

HOL wvill be createc

N " TTA unit |

tester
Yerifies that operation RTL
implementation ancd

simulation model are egual

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Compile and simulate with custom
operation

* Compile the new code

tcecc -O3 -a custom.adf -0 crc_with_custom_op.tpef -k
result main.c crc_with_custom_op.c

* This time we will use the command line
simulator ttasim and produce bus trace for
RTL verification

* Launch ttasim:
* ftasim

* Enable bus trace setting:
e setting bus trace 1

Simulate cont.

« Load architecture and program and execute program
* mach custom.adf
e prog crc_with_custom_op.tpef
° run
 Verify result (should be 0x62488e82)
* X/uw _result
« Check cycle count
* Info proc cycles
« WOW!

« Simulator produced the bus trace In file
crc_with_custom_op.tpef.bustrace

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

TCE Custom Operation Flow

[Analyze EF——

Create
Custom Operation
Compiler
Definition and
Simulation C
| model |
PR " S—
e e |
calls Designer

HLL

{C, C++, OpenCL) Specification

Architecture

AN

Profile data
Resource constraints
etc.

AN

Operation RTL
implementation is not
needed until the processor
HOL will be created

AN

Yerifies that operation RTL
implementation ancd
simulation model are egual

" Retargetable |
E. Compiler |
" Retargetable

Instruction Set
Simulator

Feedback

Create
4 Custom Operation
RTL Implementation

TTAunit |
tester |

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Add SFU implementation to HDB

* |n order to create processor VHDL we need
to add HW implementation for the new
Special Function Unit

* Implementation is in file tour_vhdl/reflect.vhdl
* Open it in text editor

* Next step is add the implementation to
Hardware Database (HDB)
* Map HW ports to architecture ports in HDB
* Add generic values to HDB
* Add HW implementation files to HDB

Add SFU cont.

* To speed up things we’'ll use the given
tour_example.hdb

* Open hardware database editor to take a
look at the hdb:

* hdbeditor tour_example.hdb &

TCE ASIP Design Flow

Designer £
HLL (or automated
(C, C++, OpenCL) “explorer”) £
TCE Design Tools " Processor |
‘ Designer ‘
| Tool |
" Retargetable |
| Compiler |
" Retargetable | ———
‘ Instruction | Feedback
Simulator |
Hardware Processor Cycle count
Datahast_: Generator Resource constraints
(FPGA specific) Profile data
Memory usage
"Prngram Image i
|_ Generator L
I 7 — Optional instruction
Memaory
Platform - ™) i
e ition H ﬂ:ﬂ:;tr:, | compression
(FPGA specific) \ g
3rd party tools ' FPGA ™
‘ Synthesis | S Feedback
| Tools |
f P
FPG.F. FPGA resource usage
Programming files Max frequency

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Generate processor RTL
implementation

* Open the architecture in ProDe
* prode custom.adf &
* select Tools -> Processor Implementation

* Next step Is to select implementations for the
function units

» But we will skip this and use the given
Implementation description file

* Click Load IDF... and select file
custom_operations.idf

Generate processor cont

* In Binary Encoding Map dialog
» Select Generate new
 Target directory dialog
 Click Browse...
» Create new folder: proge-output
» Select it
* Click OK to generate processor

* Processor RTL implementation is now In
folder proge-output

TCE ASIP Design Flow

Designer £
HLL (or automated
(C, C++, OpenCL) “explorer”) £
TCE Design Tools S Proceszor)
‘ Designer ‘
| Tool |
" Retargetable
| Compiler |
" Retargetable ———
‘ Instruction Feedback
Simulator |
. o
Hardware - ™) Cyel it
Processor LAl 5
Datahast_: H Generator | Resource constraints
(FPGA specific) 4 Profile data
Memory usage
"Prngram Image i
|_ Generator
- " —{Optional instruction
Memaory
Platform - ™) i
Description H ﬂ:ﬁ:;tr:, | compression
(FPGA specific) \ g
3rd party tools r FPGA b
‘ Synthesis | = Feedback
| Tools |
f P
FPG.F. FPGA resource usage
Programming files Max frequency

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Generate program binary images

* Now we need the program images for
the processor
* generatebits -d -w 4 -p crc_with_custom_op.tpef
-X proge-output custom.adf
« Command creates

* Instruction memory image crc_with_custom_op.img
- Data memory image crc_with_custom_op data.img

VHDL simulation

* Go to proge-output folder
* Cp proge-output
« Copy images for the testbench

* cp ../crc_with_custom_op.img tb/imem_init.img
e cp ../crc_with_custom_op_data.img tb/dmem_init.img

« Compile testbench
 ./ghdl_compile.sh

 Simulate testbench

 ./ghdl_simulate.sh
e This will take some time

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Verification

» We can compare the bus traces to verify RTL
simulation

 Cut RTL simulation bus trace to match the
ttasim bus trace
* head -n (cycle count) bus.dump > sim.dump

« Compare bus traces

 diff -u sim.dump ../crc_with_custom_op.tpef.bustrace
* |If there Is no output traces were equal

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Summary

TTA Is a customizable processor architecture
template

We have covered the basics of the TCE design flow

* You now know how to
« Modify a processor architecture
« Create and add custom operations

* Create RTL implementation of the processor and binary
Images of the program

« Verify the implementation
Simple custom operation increased the performance
significantly
Performance can be also increased by adding more
resources to the processor
* You can try it on your own $ TAMPERE UNIVERSITY OF TECHNOLOGY

Department of Computer Systems

