
1

17.02.09Department of Computer Systems

TCE Tour: Screencast

These are accompanying slides for a set of TCE screencast
clips available at
http://tce.cs.tut.fi/index.php/home/screencasts

The set of videos goes through the most important tools in
TCE by means of a simple CRC example application

Starts from C, ends with a TTA+program running on an FPGA
board

2

17.02.09Department of Computer Systems

Intro and Exploration (about 7 minutes)

Start with the application code in C
minimal.adf is shipped in TCE:

 a minimal set of resources in TTAs supported by the tcecc compiler

reflect.vhdl is a VHDL implementation of a custom operation
which will be added later to the design

3

17.02.09Department of Computer Systems

Intro and Exploration

4

17.02.09Department of Computer Systems

Intro and Exploration

Open the minimal.adf to the Processor Design GUI
 “prode minimal.adf &”

5

17.02.09Department of Computer Systems

6

17.02.09Department of Computer Systems

Intro and Exploration

The main.c has a simple string “TCE rocks!” for which we are
going to compute the CRC

7

17.02.09Department of Computer Systems

8

17.02.09Department of Computer Systems

9

17.02.09Department of Computer Systems

Intro and Exploration

Let's see how well the CRC code runs with the smallest
supported TTA
 Compile the code to the TTA with the retargetable tcecc compiler
 Load the processor architecture description and the compiled program to

the Processor Simulator GUI (Proxim)

10

17.02.09Department of Computer Systems

11

17.02.09Department of Computer Systems

Intro and Exploration

Proxim's main window displays the disassembly of the TTA
program

The minimal.adf has only one bus, thus the moves cannot be
parallelized

12

17.02.09Department of Computer Systems

13

17.02.09Department of Computer Systems

Intro and Exploration

Proxim's machine window:
 Visualizes the TTA processor when running the given program
 Single stepping the assembly code highlights the transport paths in the

processor accessed by the moves in the current instruction
 Allows inspecting the values in programmer-visible registers of the TTA

such as FU ports, the utilization of the components (color coding), etc.
 Most importantly for this case, the simulator displays the total cycle count

6109 (number of TTA instructions executed)
 Also statistics for the different operations executed, registers used etc. can

be produced to guide manual exploration of the architecture
• “info proc stats”

14

17.02.09Department of Computer Systems

15

17.02.09Department of Computer Systems

16

17.02.09Department of Computer Systems

17

17.02.09Department of Computer Systems

18

17.02.09Department of Computer Systems

Intro and Exploration

The minimal.adf has only 5 registers, the CRC algorithm can
use more as we saw from the stats

Let's add some more registers using the Processor Designer
(ProDe)
 In this case we double the number to 10 registers

Recompile the program for the new architecture with 10
registers using tcecc

This time we'll load the processor+program to the command
line interface of the simulator (ttasim)
 “info proc cycles” works here also and produces the cycle count 3116

which is almost halved from the one we got using a machine with only 5
registers

19

17.02.09Department of Computer Systems

20

17.02.09Department of Computer Systems

21

17.02.09Department of Computer Systems

Intro and Exploration

Next we'll try the Design Space Explorer tool
The tool is used to launch “explorer plugins” which perform

modifications to the target and measure their effect to
 cycle count
 area estimate
 energy estimate
 longest path delay estimate

The plugins can be fully automated or semi-automated
 Can implement a loop that explores multiple points in the design space or

just generate one new design space point (processor configuration)

“explore -g” prints a list of available exploration plugins
 In this example we use the GrowMachine plugin which adds basic

resources to the machine until the cycle count does not drop anymore
significantly

22

17.02.09Department of Computer Systems

23

17.02.09Department of Computer Systems

Intro and Exploration

The explorer is used by first adding the software of the
application to a Design Space Database (dsdb)

Then we launch the explorer plugin which produces one or
more new “configurations” to the DSDB along with their
characteristics data (at least cycle counts)
 Plugins usually have parameters which can also be configured through

explorer

In this case 2 new configurations were produced after starting
the GrowMachine from our minimal.adf starting point

The best cycle count we got using this explorer plugin is 690
Let's see with ProDe how the generated best architecture

looks like

24

17.02.09Department of Computer Systems

25

17.02.09Department of Computer Systems

26

17.02.09Department of Computer Systems

Intro and Exploration

As we can see, the GrowMachine plugin has added more
buses and FUs to the machine
 Currently a brute-force approach of incrementing the current resource set

with a constant factor is used

For example, the machine has 9 buses (instead of 1), many
more function units and additional two register files

27

17.02.09Department of Computer Systems

Profiling and Using a Custom Operation
(about 4 minutes)

The GrowMachine plugin managed to squeeze the cycle count
down to 690 by just duplicating resources

We are not happy with this number yet as we know it can get
much lower when some custom hardware is used

This video shows how to profile the application and use a
custom operation (special function unit) to accelerate a “hot
spot” in the CRC program

28

17.02.09Department of Computer Systems

Profiling and Using a Custom Operation

First we'll compile the program with procedure inlining disabled
so we get a proper function profile of the program

29

17.02.09Department of Computer Systems

30

17.02.09Department of Computer Systems

Profiling and Using a Custom Operation

Simulate the program:
 Note that the cycle count has increased due to the disabled inlining to

4917
 Verify the program by dumping the computed CRC number from memory

31

17.02.09Department of Computer Systems

32

17.02.09Department of Computer Systems

Profiling and Using a Custom Operation

Program profile:
 To find out the “hot spot” in the program, we highlight the top executed

instructions
 We find out the instructions in the _reflect() function are executed very

frequently, thus it's a potential candidate for acceleration with a custom
operation (special function unit)

33

17.02.09Department of Computer Systems

34

17.02.09Department of Computer Systems

Profiling and Using a Custom Operation

We find out that the reflect function is called through macros
REFLECT_DATA and REFLECT_REMAINDER in the core
loop of the C code

The reflect() computes a “bit reflection”
 Reverses bits like a mirror was placed in the middle of the word)
 We see from the macros that it's done only for word sizes 8 and 32 bits

35

17.02.09Department of Computer Systems

36

17.02.09Department of Computer Systems

37

17.02.09Department of Computer Systems

38

17.02.09Department of Computer Systems

Profiling and Using a Custom Operation

The reflect() function is extremely simple and efficient to
implement in hardware (just wiring and shifting if necessary),
but looks like a heavy loop when implemented in C code

Let's create a custom operation for the REFLECT
 Custom operations added to TCE using a tool called Operation Set Editor

(OSEd)

First we add general “static” information about the operation
like its name and the number and type of inputs and outputs

39

17.02.09Department of Computer Systems

40

17.02.09Department of Computer Systems

Profiling and Using a Custom Operation

The let's add a simulation behavior description for the
operation

We can copy the original C code to the simulation behavior
definition, just define:
 Reads from operation inputs (UINT(1), UINT(2)) to variables in the C code
 Write result to the operation output (IO(3))

The simulation behavior is loaded runtime to the processor
simulator
 It's a “plugin” module which needs to be compiled
 Build it with OSEd
 Test that the simulation behavior definition works using the operation

behavior simulator

41

17.02.09Department of Computer Systems

42

17.02.09Department of Computer Systems

43

17.02.09Department of Computer Systems

44

17.02.09Department of Computer Systems

45

17.02.09Department of Computer Systems

Adding SFU to the Machine and Using it in
C Code (1.5 minutes)

Now that we have defined a new custom operation to the TCE,
we can use it in our TTA in a special function unit and execute
it from our C code

Add the custom operation to a new function unit in the TTA
with the Processor Designer tool
 Add a function unit
 Add ports to the function unit
 Add the operation to the function unit
 Edit the operations port bindings, pipeline resource usage, and latency

In this case we are certain that the REFLECT operation can be
done in 2 cycles in hardware
 Probably 1 cycle would be enough due to the operation's simplicity, but we

“play it safe”

46

17.02.09Department of Computer Systems

47

17.02.09Department of Computer Systems

48

17.02.09Department of Computer Systems

49

17.02.09Department of Computer Systems

Adding SFU to the Machine and Using it in
C Code (1.5 minutes)

Now the architecture supports the REFLECT custom operation
with the added function unit

Let's now use the REFLECT operation from our C code to
accelerate the algorithm

First add:
 #include “tceops.h”
 This brings in the macros that are used to invoke TTA operations manually

Then call the REFLECT operation through a TCE operation
macro:
 _TCE_REFLECT(...);

50

17.02.09Department of Computer Systems

51

17.02.09Department of Computer Systems

52

17.02.09Department of Computer Systems

53

17.02.09Department of Computer Systems

Adding SFU to the Machine and Using it in
C Code (1.5 minutes)

Finally, recompile the code which now uses the custom
operation, verify that the program still works correctly, and see
its effect to the cycle count using the simulator
 Cycle count now dropped to 403
 By using custom operation we reached a lower cycle count with much less

hardware

Now we could use explorer to increase the performance
 Current architecture has only one bus
 By increasing concurrency we would reach lower cycle count

54

17.02.09Department of Computer Systems

55

17.02.09Department of Computer Systems

Adding Implementation of the SFU to the
Hardware Database (50 sec)

Now we have found a good custom operation to accelerate our
algorithm and used it in our architecture and C code

In order to generate VHDL for the processor, we still need to
add an implementation of the SFU to a Hardware Database
(HDB)

Of course, implementing the SFU might take a bit longer than
the 50 sec, thus we use a previously implemented VHDL block
for demonstration purposes :)

HDBEditor is a GUI for editing HDBs, we use it to add the
implementation to an HDB along with the data needed to
generate a processor
 The names of the input/output ports and the entity name in the VHDL, etc..

56

17.02.09Department of Computer Systems

57

17.02.09Department of Computer Systems

58

17.02.09Department of Computer Systems

Adding Implementation of the SFU to the
Hardware Database (50 sec)

Now we have added an implementation of the REFLECT SFU
to a HDB

Finally we need to connect the architecture of the FU in our
TTA architecture file to this implementation
 Use automated exploration plugin for this

In TCE, architecture of the processor components and the
actual implementation are separated
 Architecture components (in ADF files edited with ProDe) are connected to

HDB implementations through an Implementation Definition File (IDF)
 Architecture definition file (ADF), implementation definition file (IDF) and

one or more Hardware Databases (HDB) form a “processor configuration”
that can be outputted as a VHDL implementation

59

17.02.09Department of Computer Systems

60

17.02.09Department of Computer Systems

61

17.02.09Department of Computer Systems

Generating the Processor (32 sec)

Now we have all we need to generate the processor
implementation in VHDL

For this we use the Processor Generator (ProGe) tool which
can be invoked from the command line or from the ProDe GUI

62

17.02.09Department of Computer Systems

63

17.02.09Department of Computer Systems

64

17.02.09Department of Computer Systems

65

17.02.09Department of Computer Systems

66

17.02.09Department of Computer Systems

Change Load-store Unit to an Avalon Bus
Load/store Unit (36 secs)

Next we'll use an FPGA board to test the processor
For this we need to change the load-store unit function unit

implementation to one that supports Altera's Avalon interface
 We'll use the Altera Memory Mapped Interface
 TTA acts as a master on the bus
 This way we can use Altera's IP-components

This can be done quickly with the Processor Designer tool

67

17.02.09Department of Computer Systems

68

17.02.09Department of Computer Systems

69

17.02.09Department of Computer Systems

70

17.02.09Department of Computer Systems

71

17.02.09Department of Computer Systems

Using Avalon LCD for Output (21 secs)

Now the TTA can interface with the memory (and other I/O) in
the FPGA board using the Avalon bus

Finally, we need a device to produce some output from our
CRC computation to verify it actually works

For this we use an LCD screen connected through the Avalon
bus
 We use the LCD controller from SOPC Builder's IP component library

The LCD controller is connected to the Avalon Memory
Mapped bus interface so we can define a putchar() function
(which is used by printf()) that writes characters to the
controller's memory mapped registers

72

17.02.09Department of Computer Systems

73

17.02.09Department of Computer Systems

Generate the Bit Image of the Program
Memory and Synthesize the Design
(2 minutes)

Finally, to get the TTA running on the FPGA we need to
generate a bit image of the program memory
 Use command line tool generatebits

74

17.02.09Department of Computer Systems

75

17.02.09Department of Computer Systems

Generate the Bit Image of the Program
Memory and Synthesize the Design

Load the VHDL files of the generated TTA processor to the
Altera's Quartus II tool to synthesize the design to the FPGA
 We add a layer on top of the ProGe generated toplevel.vhdl (not displayed

in the video)
• In this case the instruction memory is very small so we implement as “logic”
• Synthesize tools optimizes it into a small space of internal memory banks and

logic

 The external interface of the new layer is the external buses of the load-
store unit we added, and control signals (clk, reset)

• The LSU interface is actually the Avalon interface

 Then in Altera's SOPC builder we export TTA as a component to the
design along with the onchip memory and the LCD component and
connect them all to the Avalon bus

• TTA is the Avalon Master and the memory and LCD controller are slaves

 Synthesize the design to the FPGA and note how many of the logic
elements were consumed of the FPGA by our TTA

 Finally, upload the design to the FPGA board

76

17.02.09Department of Computer Systems

77

17.02.09Department of Computer Systems

78

17.02.09Department of Computer Systems

79

17.02.09Department of Computer Systems

80

17.02.09Department of Computer Systems

81

17.02.09Department of Computer Systems

The End – Thanks for Your Attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

