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TCE Tour: Screencast

These are accompanying slides for a set of TCE screencast 
clips available at
http://tce.cs.tut.fi/index.php/home/screencasts

The set of videos goes through the most important tools in 
TCE by means of a simple CRC example application

Starts from C, ends with a TTA+program running on an FPGA 
board
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Intro and Exploration (about 7 minutes)

Start with the application code in C
minimal.adf is shipped in TCE: 

 a minimal set of resources in TTAs supported by the tcecc compiler 

reflect.vhdl is a VHDL implementation of a custom operation 
which will be added later to the design
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Intro and Exploration
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Intro and Exploration

Open the minimal.adf to the Processor Design GUI
 “prode minimal.adf &”
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Intro and Exploration

The main.c has a simple string “TCE rocks!” for which we are 
going to compute the CRC 
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Intro and Exploration

Let's see how well the CRC code runs with the smallest 
supported TTA
 Compile the code to the TTA with the retargetable tcecc compiler
 Load the processor architecture description and the compiled program  to 

the Processor Simulator GUI (Proxim)
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Intro and Exploration

Proxim's main window displays the disassembly of the TTA 
program

The minimal.adf has only one bus, thus the moves cannot be 
parallelized
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Intro and Exploration

Proxim's machine window: 
 Visualizes the TTA processor when running the given program 
 Single stepping the assembly code highlights the transport paths in the 

processor accessed by the moves in the current instruction
 Allows inspecting the values in programmer-visible registers of the TTA 

such as FU ports, the utilization of the components (color coding), etc.
 Most importantly for this case, the simulator displays the total cycle count 

6109 (number of  TTA instructions executed)
 Also statistics for the different operations executed, registers used etc. can 

be produced to guide manual exploration of the architecture 
• “info proc stats”
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Intro and Exploration

The minimal.adf has only 5 registers, the CRC algorithm can 
use more as we saw from the stats

Let's add some more registers using the Processor Designer 
(ProDe)
 In this case we double the number to 10 registers

Recompile the program for the new architecture with 10 
registers using tcecc

This time we'll load the processor+program to the command 
line interface of the simulator (ttasim)
 “info proc cycles” works here also and produces the cycle count 3116 

which is almost halved from the one we got using a machine with only 5 
registers
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Intro and Exploration

Next we'll try the Design Space Explorer tool
The tool is used to launch “explorer plugins” which perform 

modifications to the target and measure their effect to 
 cycle count 
 area estimate 
 energy estimate 
 longest path delay estimate

The plugins can be fully automated or semi-automated
 Can implement a loop that explores multiple points in the design space or 

just generate one new design space point (processor configuration)

“explore -g” prints a list of available exploration plugins
 In this example we use the GrowMachine plugin which adds basic 

resources to the machine until the cycle count does not drop anymore 
significantly
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Intro and Exploration

The explorer is used by first adding the software of the 
application to a Design Space Database (dsdb)

Then we launch the explorer plugin which produces one or 
more new “configurations” to the DSDB along with their 
characteristics data (at least cycle counts)
 Plugins usually have parameters which can also be configured through 

explorer

In this case 2 new configurations were produced after starting 
the GrowMachine from our minimal.adf starting point

The best cycle count we got using this explorer plugin is 690
Let's see with ProDe how the generated best architecture 

looks like 
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Intro and Exploration

As we can see, the GrowMachine plugin has added more 
buses and FUs to the machine
 Currently a brute-force approach of incrementing the current resource set 

with a constant factor is used

For example, the machine has 9 buses (instead of 1), many 
more function units and additional two register files
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Profiling and Using a Custom Operation 
(about 4 minutes)

The GrowMachine plugin managed to squeeze the cycle count 
down to 690 by just duplicating resources

We are not happy with this number yet as we know it can get 
much lower when some custom hardware is used

This video shows how to profile the application and use a 
custom operation (special function unit) to accelerate a “hot 
spot” in the CRC program
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Profiling and Using a Custom Operation 

First we'll compile the program with procedure inlining disabled 
so we get a proper function profile of the program
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Profiling and Using a Custom Operation 

Simulate the program:
 Note that the cycle count has increased due to the disabled inlining to 

4917 
 Verify the program by dumping the computed CRC number from memory
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Profiling and Using a Custom Operation 

Program profile:
 To find out the “hot spot” in the program, we highlight the top executed 

instructions
 We find out the instructions in the _reflect() function are executed very 

frequently, thus it's a potential candidate for acceleration with a custom 
operation (special function unit)
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Profiling and Using a Custom Operation 

We find out that the reflect function is called through macros 
REFLECT_DATA and REFLECT_REMAINDER in the core 
loop of the C code

The reflect() computes a “bit reflection” 
 Reverses bits like a mirror was placed in the middle of the word)
 We see from the macros that it's done only for word sizes 8 and 32 bits
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Profiling and Using a Custom Operation 

The reflect() function is extremely simple and efficient to 
implement in hardware (just wiring and shifting if necessary), 
but looks like a heavy loop when implemented in C code

Let's create a custom operation for the REFLECT
 Custom operations added to TCE using a tool called Operation Set Editor 

(OSEd)

First we add general “static” information about the operation 
like its name and the number and type of inputs and outputs
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Profiling and Using a Custom Operation 

The let's add a simulation behavior description for the 
operation

We can copy the original C code to the simulation behavior 
definition, just define:
 Reads from operation inputs (UINT(1), UINT(2)) to variables in the C code 
 Write result to the operation output (IO(3))

The simulation behavior is loaded runtime to the processor 
simulator
 It's a “plugin” module which needs to be compiled
 Build it with OSEd
 Test that the simulation behavior definition works using the operation 

behavior simulator 
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Adding SFU to the Machine and Using it in 
C Code (1.5 minutes)

Now that we have defined a new custom operation to the TCE, 
we can use it in our TTA in a special function unit and execute 
it from our C code

Add the custom operation to a new function unit in the TTA 
with the Processor Designer tool 
 Add a function unit
 Add ports to the function unit
 Add the operation to the function unit
 Edit the operations port bindings, pipeline resource usage, and latency

In this case we are certain that the REFLECT operation can be 
done in 2 cycles in hardware 
 Probably 1 cycle would be enough due to the operation's simplicity, but we 

“play it safe”
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Adding SFU to the Machine and Using it in 
C Code (1.5 minutes)

Now the architecture supports the REFLECT custom operation 
with the added function unit

Let's now use the REFLECT operation from our C code to 
accelerate the algorithm

First add:
 #include “tceops.h”
 This brings in the macros that are used to invoke TTA operations manually

Then call the REFLECT operation through a TCE operation 
macro:
 _TCE_REFLECT(...);
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Adding SFU to the Machine and Using it in 
C Code (1.5 minutes)

Finally, recompile the code which now uses the custom 
operation, verify that the program still works correctly, and see 
its effect to the cycle count using the simulator
 Cycle count now dropped to 403
 By using custom operation we reached a lower cycle count with much less 

hardware

Now we could use explorer to increase the performance
 Current architecture has only one bus
 By increasing concurrency we would reach lower cycle count
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Adding Implementation of the SFU to the 
Hardware Database (50 sec)

Now we have found a good custom operation to accelerate our 
algorithm and used it in our architecture and C code

In order to generate VHDL for the processor, we still need to 
add an implementation of the SFU to a Hardware Database 
(HDB)

Of course, implementing the SFU might take a bit longer than 
the 50 sec, thus we use a previously implemented VHDL block 
for demonstration purposes :)

HDBEditor is a GUI for editing HDBs, we use it to add the 
implementation to an HDB along with the data needed to 
generate a processor
 The names of the input/output ports and the entity name in the VHDL, etc..
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Adding Implementation of the SFU to the 
Hardware Database (50 sec)

Now we have added an implementation of the REFLECT SFU 
to a HDB

Finally we need to connect the architecture of the FU in our 
TTA architecture file to this implementation
 Use automated exploration plugin for this

In TCE, architecture of the processor components and the 
actual implementation are separated
 Architecture components (in ADF files edited with ProDe) are connected to 

HDB implementations through an Implementation Definition File (IDF)
 Architecture definition file (ADF), implementation definition file (IDF) and 

one or more Hardware Databases (HDB) form a “processor configuration” 
that can be outputted as a VHDL implementation
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Generating the Processor (32 sec)

Now we have all we need to generate the processor 
implementation in VHDL

For this we use the Processor Generator (ProGe) tool which 
can be invoked from the command line or from the ProDe GUI
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Change Load-store Unit to an Avalon Bus 
Load/store Unit (36 secs)

Next we'll use an FPGA board to test the processor
For this we need to change the load-store unit function unit 

implementation to one that supports Altera's Avalon interface
 We'll use the Altera Memory Mapped Interface
 TTA acts as a master on the bus
 This way we can use Altera's IP-components

This can be done quickly with the Processor Designer tool
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Using Avalon LCD for Output (21 secs)

Now the TTA can interface with the memory (and other I/O) in 
the FPGA board using the Avalon bus

Finally, we need a device to produce some output from our 
CRC computation to verify it actually works

For this we use an LCD screen connected through the Avalon 
bus
 We use the LCD controller from SOPC Builder's IP component library 

The LCD controller is connected to the Avalon Memory 
Mapped bus interface so we can define a putchar() function 
(which is used by printf()) that writes characters to the 
controller's memory mapped registers
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Generate the Bit Image of the Program 
Memory and Synthesize the Design 
(2 minutes)

Finally, to get the TTA running on the FPGA we need to 
generate a bit image of the program memory
 Use command line tool generatebits
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Generate the Bit Image of the Program 
Memory and Synthesize the Design 

Load the VHDL files of the generated TTA processor to the 
Altera's Quartus II tool to synthesize the design to the FPGA
 We add a layer on top of the ProGe generated toplevel.vhdl (not displayed 

in the video)
• In this case the instruction memory is very small so we implement as “logic”
• Synthesize tools optimizes it into a small space of internal memory banks and 

logic

 The external interface of the new layer is the external buses of the load-
store unit we added, and control signals (clk, reset)

• The LSU interface is actually the Avalon interface

 Then in Altera's SOPC builder we export TTA as a component to the 
design along with the onchip memory and the LCD component and 
connect them all to the Avalon bus

• TTA is the Avalon Master and the memory and LCD controller are slaves

 Synthesize the design to the FPGA and note how many of the logic 
elements were consumed of the FPGA by our TTA

 Finally, upload the design to the FPGA board
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The End – Thanks for Your Attention!
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